| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme11.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdleme11.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdleme11.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdleme11.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdleme11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdleme11.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
| 7 |
|
simp1ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝐾 ∈ HL ) |
| 8 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑆 ∈ 𝐴 ) |
| 9 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑇 ∈ 𝐴 ) |
| 10 |
|
simp1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 11 |
|
simp1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 12 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑄 ∈ 𝐴 ) |
| 13 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑃 ≠ 𝑄 ) |
| 14 |
1 2 3 4 5 6
|
lhpat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → 𝑈 ∈ 𝐴 ) |
| 15 |
10 11 12 13 14
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑈 ∈ 𝐴 ) |
| 16 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑆 ≠ 𝑇 ) |
| 17 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) |
| 18 |
|
eqid |
⊢ ( LPlanes ‘ 𝐾 ) = ( LPlanes ‘ 𝐾 ) |
| 19 |
1 2 4 18
|
lplni2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ ( LPlanes ‘ 𝐾 ) ) |
| 20 |
7 8 9 15 16 17 19
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ ( LPlanes ‘ 𝐾 ) ) |
| 21 |
|
eqid |
⊢ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) = ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) |
| 22 |
2 4 18 21
|
lplnllnneN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( ( 𝑆 ∨ 𝑇 ) ∨ 𝑈 ) ∈ ( LPlanes ‘ 𝐾 ) ) → ( 𝑆 ∨ 𝑈 ) ≠ ( 𝑇 ∨ 𝑈 ) ) |
| 23 |
7 8 9 15 20 22
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑆 ∨ 𝑈 ) ≠ ( 𝑇 ∨ 𝑈 ) ) |