Database  
				SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)  
				Mathbox for Norm Megill  
				Construction of a vector space from a Hilbert lattice  
				cdleme17a  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Part of proof of Lemma E in Crawley  p. 114, first part of 4th
         paragraph. F  , G  , and C  represent f(s), f_s(p), and s_1
         respectively.  We show, in their notation, f_s(p)=(p \/  q) /\ 
         (q \/  s_1).  (Contributed by NM , 11-Oct-2012) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						cdleme17.l  
						⊢   ≤    =  ( le ‘ 𝐾  )  
					 
					
						 
						 
						cdleme17.j  
						⊢   ∨    =  ( join ‘ 𝐾  )  
					 
					
						 
						 
						cdleme17.m  
						⊢   ∧    =  ( meet ‘ 𝐾  )  
					 
					
						 
						 
						cdleme17.a  
						⊢  𝐴   =  ( Atoms ‘ 𝐾  )  
					 
					
						 
						 
						cdleme17.h  
						⊢  𝐻   =  ( LHyp ‘ 𝐾  )  
					 
					
						 
						 
						cdleme17.u  
						⊢  𝑈   =  ( ( 𝑃   ∨   𝑄  )  ∧   𝑊  )  
					 
					
						 
						 
						cdleme17.f  
						⊢  𝐹   =  ( ( 𝑆   ∨   𝑈  )  ∧   ( 𝑄   ∨   ( ( 𝑃   ∨   𝑆  )  ∧   𝑊  ) ) )  
					 
					
						 
						 
						cdleme17.g  
						⊢  𝐺   =  ( ( 𝑃   ∨   𝑄  )  ∧   ( 𝐹   ∨   ( ( 𝑃   ∨   𝑆  )  ∧   𝑊  ) ) )  
					 
					
						 
						 
						cdleme17.c  
						⊢  𝐶   =  ( ( 𝑃   ∨   𝑆  )  ∧   𝑊  )  
					 
				
					 
					Assertion 
					cdleme17a  
					⊢   ( ( ( 𝐾   ∈  HL  ∧  𝑊   ∈  𝐻  )  ∧  ( ( 𝑃   ∈  𝐴   ∧  ¬  𝑃   ≤   𝑊  )  ∧  𝑄   ∈  𝐴   ∧  ( 𝑆   ∈  𝐴   ∧  ¬  𝑆   ≤   𝑊  ) )  ∧  ¬  𝑆   ≤   ( 𝑃   ∨   𝑄  ) )  →  𝐺   =  ( ( 𝑃   ∨   𝑄  )  ∧   ( 𝑄   ∨   𝐶  ) ) )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							cdleme17.l  
							⊢   ≤    =  ( le ‘ 𝐾  )  
						 
						
							2  
							
								
							 
							cdleme17.j  
							⊢   ∨    =  ( join ‘ 𝐾  )  
						 
						
							3  
							
								
							 
							cdleme17.m  
							⊢   ∧    =  ( meet ‘ 𝐾  )  
						 
						
							4  
							
								
							 
							cdleme17.a  
							⊢  𝐴   =  ( Atoms ‘ 𝐾  )  
						 
						
							5  
							
								
							 
							cdleme17.h  
							⊢  𝐻   =  ( LHyp ‘ 𝐾  )  
						 
						
							6  
							
								
							 
							cdleme17.u  
							⊢  𝑈   =  ( ( 𝑃   ∨   𝑄  )  ∧   𝑊  )  
						 
						
							7  
							
								
							 
							cdleme17.f  
							⊢  𝐹   =  ( ( 𝑆   ∨   𝑈  )  ∧   ( 𝑄   ∨   ( ( 𝑃   ∨   𝑆  )  ∧   𝑊  ) ) )  
						 
						
							8  
							
								
							 
							cdleme17.g  
							⊢  𝐺   =  ( ( 𝑃   ∨   𝑄  )  ∧   ( 𝐹   ∨   ( ( 𝑃   ∨   𝑆  )  ∧   𝑊  ) ) )  
						 
						
							9  
							
								
							 
							cdleme17.c  
							⊢  𝐶   =  ( ( 𝑃   ∨   𝑆  )  ∧   𝑊  )  
						 
						
							10  
							
								1  2  3  4  5  6  7  8  9 
							 
							cdleme7a  
							⊢  𝐺   =  ( ( 𝑃   ∨   𝑄  )  ∧   ( 𝐹   ∨   𝐶  ) )  
						 
						
							11  
							
								1  2  3  4  5  6  7  9 
							 
							cdleme9  
							⊢  ( ( ( 𝐾   ∈  HL  ∧  𝑊   ∈  𝐻  )  ∧  ( ( 𝑃   ∈  𝐴   ∧  ¬  𝑃   ≤   𝑊  )  ∧  𝑄   ∈  𝐴   ∧  ( 𝑆   ∈  𝐴   ∧  ¬  𝑆   ≤   𝑊  ) )  ∧  ¬  𝑆   ≤   ( 𝑃   ∨   𝑄  ) )  →  ( 𝐹   ∨   𝐶  )  =  ( 𝑄   ∨   𝐶  ) )  
						 
						
							12  
							
								11 
							 
							oveq2d  
							⊢  ( ( ( 𝐾   ∈  HL  ∧  𝑊   ∈  𝐻  )  ∧  ( ( 𝑃   ∈  𝐴   ∧  ¬  𝑃   ≤   𝑊  )  ∧  𝑄   ∈  𝐴   ∧  ( 𝑆   ∈  𝐴   ∧  ¬  𝑆   ≤   𝑊  ) )  ∧  ¬  𝑆   ≤   ( 𝑃   ∨   𝑄  ) )  →  ( ( 𝑃   ∨   𝑄  )  ∧   ( 𝐹   ∨   𝐶  ) )  =  ( ( 𝑃   ∨   𝑄  )  ∧   ( 𝑄   ∨   𝐶  ) ) )  
						 
						
							13  
							
								10  12 
							 
							eqtrid  
							⊢  ( ( ( 𝐾   ∈  HL  ∧  𝑊   ∈  𝐻  )  ∧  ( ( 𝑃   ∈  𝐴   ∧  ¬  𝑃   ≤   𝑊  )  ∧  𝑄   ∈  𝐴   ∧  ( 𝑆   ∈  𝐴   ∧  ¬  𝑆   ≤   𝑊  ) )  ∧  ¬  𝑆   ≤   ( 𝑃   ∨   𝑄  ) )  →  𝐺   =  ( ( 𝑃   ∨   𝑄  )  ∧   ( 𝑄   ∨   𝐶  ) ) )