Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme17a
Metamath Proof Explorer
Description: Part of proof of Lemma E in Crawley p. 114, first part of 4th
paragraph. F , G , and C represent f(s), f_s(p), and s_1
respectively. We show, in their notation, f_s(p)=(p \/ q) /\
(q \/ s_1). (Contributed by NM , 11-Oct-2012)
Ref
Expression
Hypotheses
cdleme17.l
⊢ ≤ = ( le ‘ 𝐾 )
cdleme17.j
⊢ ∨ = ( join ‘ 𝐾 )
cdleme17.m
⊢ ∧ = ( meet ‘ 𝐾 )
cdleme17.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
cdleme17.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
cdleme17.u
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 )
cdleme17.f
⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) )
cdleme17.g
⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) )
cdleme17.c
⊢ 𝐶 = ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 )
Assertion
cdleme17a
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝐶 ) ) )
Proof
Step
Hyp
Ref
Expression
1
cdleme17.l
⊢ ≤ = ( le ‘ 𝐾 )
2
cdleme17.j
⊢ ∨ = ( join ‘ 𝐾 )
3
cdleme17.m
⊢ ∧ = ( meet ‘ 𝐾 )
4
cdleme17.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
5
cdleme17.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
6
cdleme17.u
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 )
7
cdleme17.f
⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) )
8
cdleme17.g
⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) )
9
cdleme17.c
⊢ 𝐶 = ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 )
10
1 2 3 4 5 6 7 8 9
cdleme7a
⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ 𝐶 ) )
11
1 2 3 4 5 6 7 9
cdleme9
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝐹 ∨ 𝐶 ) = ( 𝑄 ∨ 𝐶 ) )
12
11
oveq2d
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ 𝐶 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝐶 ) ) )
13
10 12
eqtrid
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝐶 ) ) )