| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme17.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme17.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme17.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme17.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme17.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme17.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme17.f | 
							⊢ 𝐹  =  ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme17.g | 
							⊢ 𝐺  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme17.c | 
							⊢ 𝐶  =  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  | 
						
						
							| 10 | 
							
								
							 | 
							simp33 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 12 | 
							
								
							 | 
							simpl1l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 13 | 
							
								12
							 | 
							hllatd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 14 | 
							
								
							 | 
							simpl32 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 15 | 
							
								11 4
							 | 
							atbase | 
							⊢ ( 𝑆  ∈  𝐴  →  𝑆  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑆  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simpl2l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								11 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  →  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 19 | 
							
								12 17 14 18
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl31 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 21 | 
							
								11 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 22 | 
							
								12 17 20 21
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 23 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  →  𝑆  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 24 | 
							
								12 17 14 23
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑆  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simpl1r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 26 | 
							
								
							 | 
							simpl2r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  ¬  𝑃  ≤  𝑊 )  | 
						
						
							| 27 | 
							
								1 2 3 4 5 9
							 | 
							cdleme8 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑆  ∈  𝐴 )  →  ( 𝑃  ∨  𝐶 )  =  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 28 | 
							
								12 25 17 26 14 27
							 | 
							syl221anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  𝐶 )  =  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 29 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 30 | 
							
								12 17 20 29
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 32 | 
							
								11 4
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 33 | 
							
								17 32
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 34 | 
							
								11 2 3 4 5 9
							 | 
							cdleme9b | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  𝑊  ∈  𝐻 ) )  →  𝐶  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 35 | 
							
								12 17 14 25 34
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐶  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 36 | 
							
								11 1 2
							 | 
							latjle12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝐶  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑃  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  ↔  ( 𝑃  ∨  𝐶 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 37 | 
							
								13 33 35 22 36
							 | 
							syl13anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑃  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  ↔  ( 𝑃  ∨  𝐶 )  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 38 | 
							
								30 31 37
							 | 
							mpbi2and | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  𝐶 )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 39 | 
							
								28 38
							 | 
							eqbrtrrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  𝑆 )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 40 | 
							
								11 1 13 16 19 22 24 39
							 | 
							lattrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 41 | 
							
								10 40
							 | 
							mtand | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝐶  ≤  ( 𝑃  ∨  𝑄 ) )  |