Metamath Proof Explorer


Theorem cdleme17d4

Description: TODO: FIX COMMENT. (Contributed by NM, 11-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b 𝐵 = ( Base ‘ 𝐾 )
cdlemef46.l = ( le ‘ 𝐾 )
cdlemef46.j = ( join ‘ 𝐾 )
cdlemef46.m = ( meet ‘ 𝐾 )
cdlemef46.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemef46.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemef46.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdlemef46.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdlemefs46.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdlemef46.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
Assertion cdleme17d4 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝐹𝑃 ) = 𝑄 )

Proof

Step Hyp Ref Expression
1 cdlemef46.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemef46.l = ( le ‘ 𝐾 )
3 cdlemef46.j = ( join ‘ 𝐾 )
4 cdlemef46.m = ( meet ‘ 𝐾 )
5 cdlemef46.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemef46.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemef46.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdlemef46.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdlemefs46.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
10 cdlemef46.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
11 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑃𝐴 )
12 1 5 atbase ( 𝑃𝐴𝑃𝐵 )
13 11 12 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑃𝐵 )
14 10 cdleme31id ( ( 𝑃𝐵𝑃 = 𝑄 ) → ( 𝐹𝑃 ) = 𝑃 )
15 13 14 sylan ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝐹𝑃 ) = 𝑃 )
16 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → 𝑃 = 𝑄 )
17 15 16 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃 = 𝑄 ) → ( 𝐹𝑃 ) = 𝑄 )