| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme19.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdleme19.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdleme19.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdleme19.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdleme19.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdleme19.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
| 7 |
|
cdleme19.f |
⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
| 8 |
|
cdleme19.g |
⊢ 𝐺 = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ) ) |
| 9 |
|
cdleme19.d |
⊢ 𝐷 = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) |
| 10 |
|
cdleme19.y |
⊢ 𝑌 = ( ( 𝑅 ∨ 𝑇 ) ∧ 𝑊 ) |
| 11 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐾 ∈ HL ) |
| 12 |
11
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐾 ∈ Lat ) |
| 13 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑊 ∈ 𝐻 ) |
| 14 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑃 ∈ 𝐴 ) |
| 15 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑄 ∈ 𝐴 ) |
| 16 |
|
simp21l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑆 ∈ 𝐴 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 18 |
1 2 3 4 5 6 7 17
|
cdleme1b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
11 13 14 15 16 18
|
syl23anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑇 ∈ 𝐴 ) |
| 21 |
1 2 3 4 5 6 8 17
|
cdleme1b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) → 𝐺 ∈ ( Base ‘ 𝐾 ) ) |
| 22 |
11 13 14 15 20 21
|
syl23anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐺 ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
17 2
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ 𝐺 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ∨ 𝐺 ) = ( 𝐺 ∨ 𝐹 ) ) |
| 24 |
12 19 22 23
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝐹 ∨ 𝐺 ) = ( 𝐺 ∨ 𝐹 ) ) |
| 25 |
1 2 3 4 5 6 7 8 9 10
|
cdleme19d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝐹 ∨ 𝐷 ) = ( 𝐹 ∨ 𝐺 ) ) |
| 26 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 27 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 28 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 29 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) |
| 30 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) |
| 31 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑅 ∈ 𝐴 ) |
| 32 |
|
simp31l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
| 33 |
|
simp31r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑆 ≠ 𝑇 ) |
| 34 |
33
|
necomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑇 ≠ 𝑆 ) |
| 35 |
32 34
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≠ 𝑆 ) ) |
| 36 |
|
simp32r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 37 |
|
simp32l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 38 |
36 37
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 39 |
|
simp33l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 40 |
|
simp33r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) |
| 41 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑆 ) ) |
| 42 |
11 16 20 41
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑆 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑆 ) ) |
| 43 |
40 42
|
breqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑅 ≤ ( 𝑇 ∨ 𝑆 ) ) |
| 44 |
39 43
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑇 ∨ 𝑆 ) ) ) |
| 45 |
1 2 3 4 5 6 8 7 10 9
|
cdleme19d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≠ 𝑆 ) ∧ ( ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑇 ∨ 𝑆 ) ) ) ) → ( 𝐺 ∨ 𝑌 ) = ( 𝐺 ∨ 𝐹 ) ) |
| 46 |
26 27 28 29 30 31 35 38 44 45
|
syl333anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝐺 ∨ 𝑌 ) = ( 𝐺 ∨ 𝐹 ) ) |
| 47 |
24 25 46
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝐹 ∨ 𝐷 ) = ( 𝐺 ∨ 𝑌 ) ) |