| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme1.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme1.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme1.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme1.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme1.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme1.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme1.f | 
							⊢ 𝐹  =  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme1.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 9 | 
							
								
							 | 
							hllat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								8 4
							 | 
							atbase | 
							⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑅  ∈  𝐵 )  | 
						
						
							| 14 | 
							
								1 2 3 4 5 6 8
							 | 
							cdleme0aa | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑈  ∈  𝐵 )  | 
						
						
							| 15 | 
							
								14
							 | 
							3adant3r3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑈  ∈  𝐵 )  | 
						
						
							| 16 | 
							
								8 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑅  ∈  𝐵  ∧  𝑈  ∈  𝐵 )  →  ( 𝑅  ∨  𝑈 )  ∈  𝐵 )  | 
						
						
							| 17 | 
							
								10 13 15 16
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑅  ∨  𝑈 )  ∈  𝐵 )  | 
						
						
							| 18 | 
							
								
							 | 
							simpr2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 19 | 
							
								8 4
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑄  ∈  𝐵 )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 22 | 
							
								8 4
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  𝐵 )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑃  ∈  𝐵 )  | 
						
						
							| 24 | 
							
								8 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  𝐵  ∧  𝑅  ∈  𝐵 )  →  ( 𝑃  ∨  𝑅 )  ∈  𝐵 )  | 
						
						
							| 25 | 
							
								10 23 13 24
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑃  ∨  𝑅 )  ∈  𝐵 )  | 
						
						
							| 26 | 
							
								8 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  𝐵 )  | 
						
						
							| 27 | 
							
								26
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝑊  ∈  𝐵 )  | 
						
						
							| 28 | 
							
								8 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑅 )  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ∈  𝐵 )  | 
						
						
							| 29 | 
							
								10 25 27 28
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ∈  𝐵 )  | 
						
						
							| 30 | 
							
								8 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐵  ∧  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ∈  𝐵 )  →  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) )  ∈  𝐵 )  | 
						
						
							| 31 | 
							
								10 20 29 30
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) )  ∈  𝐵 )  | 
						
						
							| 32 | 
							
								8 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑅  ∨  𝑈 )  ∈  𝐵  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) )  ∈  𝐵 )  →  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) ) )  ∈  𝐵 )  | 
						
						
							| 33 | 
							
								10 17 31 32
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) ) )  ∈  𝐵 )  | 
						
						
							| 34 | 
							
								7 33
							 | 
							eqeltrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝐹  ∈  𝐵 )  |