Metamath Proof Explorer


Theorem cdleme20k

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, antepenultimate line. D , F , Y , G represent s_2, f(s), t_2, f(t). (Contributed by NM, 20-Nov-2012)

Ref Expression
Hypotheses cdleme19.l = ( le ‘ 𝐾 )
cdleme19.j = ( join ‘ 𝐾 )
cdleme19.m = ( meet ‘ 𝐾 )
cdleme19.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme19.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme19.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme19.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
cdleme19.g 𝐺 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
cdleme19.d 𝐷 = ( ( 𝑅 𝑆 ) 𝑊 )
cdleme19.y 𝑌 = ( ( 𝑅 𝑇 ) 𝑊 )
cdleme20.v 𝑉 = ( ( 𝑆 𝑇 ) 𝑊 )
Assertion cdleme20k ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐹 𝐷 ) ≠ ( 𝑃 𝑄 ) )

Proof

Step Hyp Ref Expression
1 cdleme19.l = ( le ‘ 𝐾 )
2 cdleme19.j = ( join ‘ 𝐾 )
3 cdleme19.m = ( meet ‘ 𝐾 )
4 cdleme19.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme19.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme19.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme19.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
8 cdleme19.g 𝐺 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
9 cdleme19.d 𝐷 = ( ( 𝑅 𝑆 ) 𝑊 )
10 cdleme19.y 𝑌 = ( ( 𝑅 𝑇 ) 𝑊 )
11 cdleme20.v 𝑉 = ( ( 𝑆 𝑇 ) 𝑊 )
12 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
14 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑄𝐴 )
15 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
16 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
17 simp3r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅 ( 𝑃 𝑄 ) )
18 simp3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
19 1 2 3 4 5 9 cdlemednpq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ¬ 𝐷 ( 𝑃 𝑄 ) )
20 12 13 14 15 16 17 18 19 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝐷 ( 𝑃 𝑄 ) )
21 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
22 21 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ Lat )
23 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑊𝐻 )
24 simp2ll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑆𝐴 )
25 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
26 1 2 3 4 5 6 7 25 cdleme1b ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝑆𝐴 ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) )
27 21 23 13 14 24 26 syl23anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) )
28 simp2rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅𝐴 )
29 1 2 3 4 5 9 25 cdlemedb ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐴𝑆𝐴 ) ) → 𝐷 ∈ ( Base ‘ 𝐾 ) )
30 21 23 28 24 29 syl22anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐷 ∈ ( Base ‘ 𝐾 ) )
31 25 1 2 latlej2 ( ( 𝐾 ∈ Lat ∧ 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ 𝐷 ∈ ( Base ‘ 𝐾 ) ) → 𝐷 ( 𝐹 𝐷 ) )
32 22 27 30 31 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐷 ( 𝐹 𝐷 ) )
33 breq2 ( ( 𝐹 𝐷 ) = ( 𝑃 𝑄 ) → ( 𝐷 ( 𝐹 𝐷 ) ↔ 𝐷 ( 𝑃 𝑄 ) ) )
34 32 33 syl5ibcom ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝐹 𝐷 ) = ( 𝑃 𝑄 ) → 𝐷 ( 𝑃 𝑄 ) ) )
35 34 necon3bd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ¬ 𝐷 ( 𝑃 𝑄 ) → ( 𝐹 𝐷 ) ≠ ( 𝑃 𝑄 ) ) )
36 20 35 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐹 𝐷 ) ≠ ( 𝑃 𝑄 ) )