Metamath Proof Explorer


Theorem cdleme20l1

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, penultimate line. D , F , Y , G represent s_2, f(s), t_2, f(t) respectively. (Contributed by NM, 20-Nov-2012)

Ref Expression
Hypotheses cdleme19.l = ( le ‘ 𝐾 )
cdleme19.j = ( join ‘ 𝐾 )
cdleme19.m = ( meet ‘ 𝐾 )
cdleme19.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme19.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme19.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme19.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
cdleme19.g 𝐺 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
cdleme19.d 𝐷 = ( ( 𝑅 𝑆 ) 𝑊 )
cdleme19.y 𝑌 = ( ( 𝑅 𝑇 ) 𝑊 )
cdleme20.v 𝑉 = ( ( 𝑆 𝑇 ) 𝑊 )
Assertion cdleme20l1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐹 𝐷 ) ∈ ( LLines ‘ 𝐾 ) )

Proof

Step Hyp Ref Expression
1 cdleme19.l = ( le ‘ 𝐾 )
2 cdleme19.j = ( join ‘ 𝐾 )
3 cdleme19.m = ( meet ‘ 𝐾 )
4 cdleme19.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme19.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme19.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme19.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
8 cdleme19.g 𝐺 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
9 cdleme19.d 𝐷 = ( ( 𝑅 𝑆 ) 𝑊 )
10 cdleme19.y 𝑌 = ( ( 𝑅 𝑇 ) 𝑊 )
11 cdleme20.v 𝑉 = ( ( 𝑆 𝑇 ) 𝑊 )
12 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
13 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
15 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
16 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑆𝐴 )
17 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑆 𝑊 )
18 16 17 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
19 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑃𝑄 )
20 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
21 1 2 3 4 5 6 7 cdleme3fa ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐹𝐴 )
22 13 14 15 18 19 20 21 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐹𝐴 )
23 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑊𝐻 )
24 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅𝐴 )
25 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅 ( 𝑃 𝑄 ) )
26 1 2 3 4 5 9 cdlemeda ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐷𝐴 )
27 12 23 16 17 24 25 20 26 syl223anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐷𝐴 )
28 1 2 3 4 5 6 7 7 9 9 cdleme19c ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐹𝐷 )
29 12 23 14 15 18 24 19 20 28 syl233anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐹𝐷 )
30 eqid ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 )
31 2 4 30 llni2 ( ( ( 𝐾 ∈ HL ∧ 𝐹𝐴𝐷𝐴 ) ∧ 𝐹𝐷 ) → ( 𝐹 𝐷 ) ∈ ( LLines ‘ 𝐾 ) )
32 12 22 27 29 31 syl31anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐹 𝐷 ) ∈ ( LLines ‘ 𝐾 ) )