| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme19.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdleme19.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdleme19.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdleme19.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdleme19.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdleme19.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
| 7 |
|
cdleme19.f |
⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
| 8 |
|
cdleme19.g |
⊢ 𝐺 = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ) ) |
| 9 |
|
cdleme19.d |
⊢ 𝐷 = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) |
| 10 |
|
cdleme19.y |
⊢ 𝑌 = ( ( 𝑅 ∨ 𝑇 ) ∧ 𝑊 ) |
| 11 |
|
cdleme20.v |
⊢ 𝑉 = ( ( 𝑆 ∨ 𝑇 ) ∧ 𝑊 ) |
| 12 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐾 ∈ HL ) |
| 13 |
12
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐾 ∈ Lat ) |
| 14 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑊 ∈ 𝐻 ) |
| 15 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑃 ∈ 𝐴 ) |
| 16 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑄 ∈ 𝐴 ) |
| 17 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑆 ∈ 𝐴 ) |
| 18 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 19 |
1 2 3 4 5 6 7 18
|
cdleme1b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
12 14 15 16 17 19
|
syl23anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
|
simp21l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑅 ∈ 𝐴 ) |
| 22 |
1 2 3 4 5 9 18
|
cdlemedb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) ) → 𝐷 ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
12 14 21 17 22
|
syl22anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐷 ∈ ( Base ‘ 𝐾 ) ) |
| 24 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑇 ∈ 𝐴 ) |
| 25 |
1 2 3 4 5 6 8 18
|
cdleme1b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) → 𝐺 ∈ ( Base ‘ 𝐾 ) ) |
| 26 |
12 14 15 16 24 25
|
syl23anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐺 ∈ ( Base ‘ 𝐾 ) ) |
| 27 |
1 2 3 4 5 10 18
|
cdlemedb |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 28 |
12 14 21 24 27
|
syl22anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
18 2
|
latj4 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ 𝐷 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝐺 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐹 ∨ 𝐷 ) ∨ ( 𝐺 ∨ 𝑌 ) ) = ( ( 𝐹 ∨ 𝐺 ) ∨ ( 𝐷 ∨ 𝑌 ) ) ) |
| 30 |
13 20 23 26 28 29
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( ( 𝐹 ∨ 𝐷 ) ∨ ( 𝐺 ∨ 𝑌 ) ) = ( ( 𝐹 ∨ 𝐺 ) ∨ ( 𝐷 ∨ 𝑌 ) ) ) |
| 31 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
| 32 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) |
| 33 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) |
| 34 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
| 35 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) |
| 36 |
|
simp321 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 37 |
|
simp322 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 38 |
36 37
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 39 |
|
simp323 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 40 |
1 2 3 4 5 6 7 8 9 10 11
|
cdleme20d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐹 ∨ 𝐺 ) ∧ ( 𝐷 ∨ 𝑌 ) ) = 𝑉 ) |
| 41 |
31 32 33 34 35 38 39 40
|
syl133anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( ( 𝐹 ∨ 𝐺 ) ∧ ( 𝐷 ∨ 𝑌 ) ) = 𝑉 ) |
| 42 |
|
simp22r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ¬ 𝑆 ≤ 𝑊 ) |
| 43 |
|
simp31r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑆 ≠ 𝑇 ) |
| 44 |
1 2 3 4 5 11
|
lhpat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑆 ≠ 𝑇 ) ) → 𝑉 ∈ 𝐴 ) |
| 45 |
12 14 17 42 24 43 44
|
syl222anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑉 ∈ 𝐴 ) |
| 46 |
41 45
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( ( 𝐹 ∨ 𝐺 ) ∧ ( 𝐷 ∨ 𝑌 ) ) ∈ 𝐴 ) |
| 47 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 48 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 49 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 50 |
|
simp31l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
| 51 |
1 2 3 4 5 6 7
|
cdleme3fa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐹 ∈ 𝐴 ) |
| 52 |
47 48 49 32 50 36 51
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐹 ∈ 𝐴 ) |
| 53 |
1 2 3 4 5 6 8
|
cdleme3fa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐺 ∈ 𝐴 ) |
| 54 |
47 48 49 33 50 37 53
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐺 ∈ 𝐴 ) |
| 55 |
|
simp33r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) |
| 56 |
1 2 3 4 5 6 7 8
|
cdleme16b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝐹 ≠ 𝐺 ) |
| 57 |
31 32 33 35 36 37 55 56
|
syl133anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐹 ≠ 𝐺 ) |
| 58 |
|
eqid |
⊢ ( LLines ‘ 𝐾 ) = ( LLines ‘ 𝐾 ) |
| 59 |
2 4 58
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐹 ∈ 𝐴 ∧ 𝐺 ∈ 𝐴 ) ∧ 𝐹 ≠ 𝐺 ) → ( 𝐹 ∨ 𝐺 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 60 |
12 52 54 57 59
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝐹 ∨ 𝐺 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 61 |
1 2 3 4 5 9
|
cdlemeda |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐷 ∈ 𝐴 ) |
| 62 |
12 14 17 42 21 39 36 61
|
syl223anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐷 ∈ 𝐴 ) |
| 63 |
|
simp23r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ¬ 𝑇 ≤ 𝑊 ) |
| 64 |
1 2 3 4 5 10
|
cdlemeda |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑌 ∈ 𝐴 ) |
| 65 |
12 14 24 63 21 39 37 64
|
syl223anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝑌 ∈ 𝐴 ) |
| 66 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
| 67 |
|
simp33l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) |
| 68 |
1 2 3 4 5 6 7 8 9 10 11
|
cdleme20j |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝐷 ≠ 𝑌 ) |
| 69 |
47 48 49 34 32 33 35 66 67 68
|
syl333anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → 𝐷 ≠ 𝑌 ) |
| 70 |
2 4 58
|
llni2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝐷 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) ∧ 𝐷 ≠ 𝑌 ) → ( 𝐷 ∨ 𝑌 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 71 |
12 62 65 69 70
|
syl31anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝐷 ∨ 𝑌 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 72 |
|
eqid |
⊢ ( LPlanes ‘ 𝐾 ) = ( LPlanes ‘ 𝐾 ) |
| 73 |
2 3 4 58 72
|
2llnmj |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ∨ 𝐺 ) ∈ ( LLines ‘ 𝐾 ) ∧ ( 𝐷 ∨ 𝑌 ) ∈ ( LLines ‘ 𝐾 ) ) → ( ( ( 𝐹 ∨ 𝐺 ) ∧ ( 𝐷 ∨ 𝑌 ) ) ∈ 𝐴 ↔ ( ( 𝐹 ∨ 𝐺 ) ∨ ( 𝐷 ∨ 𝑌 ) ) ∈ ( LPlanes ‘ 𝐾 ) ) ) |
| 74 |
12 60 71 73
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( ( ( 𝐹 ∨ 𝐺 ) ∧ ( 𝐷 ∨ 𝑌 ) ) ∈ 𝐴 ↔ ( ( 𝐹 ∨ 𝐺 ) ∨ ( 𝐷 ∨ 𝑌 ) ) ∈ ( LPlanes ‘ 𝐾 ) ) ) |
| 75 |
46 74
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( ( 𝐹 ∨ 𝐺 ) ∨ ( 𝐷 ∨ 𝑌 ) ) ∈ ( LPlanes ‘ 𝐾 ) ) |
| 76 |
30 75
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( ( 𝐹 ∨ 𝐷 ) ∨ ( 𝐺 ∨ 𝑌 ) ) ∈ ( LPlanes ‘ 𝐾 ) ) |
| 77 |
1 2 3 4 5 6 7 8 9 10 11
|
cdleme20l1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ∨ 𝐷 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 78 |
47 48 49 21 17 42 50 36 39 77
|
syl333anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝐹 ∨ 𝐷 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 79 |
|
eqid |
⊢ ( ( 𝑇 ∨ 𝑆 ) ∧ 𝑊 ) = ( ( 𝑇 ∨ 𝑆 ) ∧ 𝑊 ) |
| 80 |
1 2 3 4 5 6 8 7 10 9 79
|
cdleme20l1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐺 ∨ 𝑌 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 81 |
47 48 49 21 24 63 50 37 39 80
|
syl333anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( 𝐺 ∨ 𝑌 ) ∈ ( LLines ‘ 𝐾 ) ) |
| 82 |
2 3 4 58 72
|
2llnmj |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ∨ 𝐷 ) ∈ ( LLines ‘ 𝐾 ) ∧ ( 𝐺 ∨ 𝑌 ) ∈ ( LLines ‘ 𝐾 ) ) → ( ( ( 𝐹 ∨ 𝐷 ) ∧ ( 𝐺 ∨ 𝑌 ) ) ∈ 𝐴 ↔ ( ( 𝐹 ∨ 𝐷 ) ∨ ( 𝐺 ∨ 𝑌 ) ) ∈ ( LPlanes ‘ 𝐾 ) ) ) |
| 83 |
12 78 81 82
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( ( ( 𝐹 ∨ 𝐷 ) ∧ ( 𝐺 ∨ 𝑌 ) ) ∈ 𝐴 ↔ ( ( 𝐹 ∨ 𝐷 ) ∨ ( 𝐺 ∨ 𝑌 ) ) ∈ ( LPlanes ‘ 𝐾 ) ) ) |
| 84 |
76 83
|
mpbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑅 ≤ ( 𝑆 ∨ 𝑇 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) ) → ( ( 𝐹 ∨ 𝐷 ) ∧ ( 𝐺 ∨ 𝑌 ) ) ∈ 𝐴 ) |