Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme21.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme21.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme21.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme21.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme21.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme21.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
1 2 3 4 5 6
|
cdleme21c |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) → ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑧 ) ) |
8 |
7
|
3adant2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) → ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑧 ) ) |
9 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) → 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) |
10 |
|
oveq2 |
⊢ ( 𝑇 = 𝑧 → ( 𝑆 ∨ 𝑇 ) = ( 𝑆 ∨ 𝑧 ) ) |
11 |
10
|
breq2d |
⊢ ( 𝑇 = 𝑧 → ( 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ↔ 𝑈 ≤ ( 𝑆 ∨ 𝑧 ) ) ) |
12 |
9 11
|
syl5ibcom |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) → ( 𝑇 = 𝑧 → 𝑈 ≤ ( 𝑆 ∨ 𝑧 ) ) ) |
13 |
12
|
necon3bd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) → ( ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑧 ) → 𝑇 ≠ 𝑧 ) ) |
14 |
8 13
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑧 ) = ( 𝑆 ∨ 𝑧 ) ) ) → 𝑇 ≠ 𝑧 ) |