Metamath Proof Explorer


Theorem cdleme21b

Description: Part of proof of Lemma E in Crawley p. 115. (Contributed by NM, 28-Nov-2012)

Ref Expression
Hypotheses cdleme21a.l = ( le ‘ 𝐾 )
cdleme21a.j = ( join ‘ 𝐾 )
cdleme21a.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion cdleme21b ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ¬ 𝑧 ( 𝑃 𝑄 ) )

Proof

Step Hyp Ref Expression
1 cdleme21a.l = ( le ‘ 𝐾 )
2 cdleme21a.j = ( join ‘ 𝐾 )
3 cdleme21a.a 𝐴 = ( Atoms ‘ 𝐾 )
4 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
5 simp11 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝐾 ∈ HL )
6 hlcvl ( 𝐾 ∈ HL → 𝐾 ∈ CvLat )
7 5 6 syl ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝐾 ∈ CvLat )
8 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝑧𝐴 )
9 simp13 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝑄𝐴 )
10 simp12 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝑃𝐴 )
11 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝑆𝐴 )
12 1 2 3 atnlej1 ( ( 𝐾 ∈ HL ∧ ( 𝑆𝐴𝑃𝐴𝑄𝐴 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → 𝑆𝑃 )
13 12 necomd ( ( 𝐾 ∈ HL ∧ ( 𝑆𝐴𝑃𝐴𝑄𝐴 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → 𝑃𝑆 )
14 5 11 10 9 4 13 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝑃𝑆 )
15 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) )
16 3 2 cvlsupr5 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑆𝐴𝑧𝐴 ) ∧ ( 𝑃𝑆 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝑧𝑃 )
17 7 10 11 8 14 15 16 syl132anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝑧𝑃 )
18 1 2 3 cvlatexch1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑧𝐴𝑄𝐴𝑃𝐴 ) ∧ 𝑧𝑃 ) → ( 𝑧 ( 𝑃 𝑄 ) → 𝑄 ( 𝑃 𝑧 ) ) )
19 7 8 9 10 17 18 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ( 𝑧 ( 𝑃 𝑄 ) → 𝑄 ( 𝑃 𝑧 ) ) )
20 3 2 cvlsupr8 ( ( 𝐾 ∈ CvLat ∧ ( 𝑃𝐴𝑆𝐴𝑧𝐴 ) ∧ ( 𝑃𝑆 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ( 𝑃 𝑆 ) = ( 𝑃 𝑧 ) )
21 7 10 11 8 14 15 20 syl132anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ( 𝑃 𝑆 ) = ( 𝑃 𝑧 ) )
22 21 breq2d ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ( 𝑄 ( 𝑃 𝑆 ) ↔ 𝑄 ( 𝑃 𝑧 ) ) )
23 19 22 sylibrd ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ( 𝑧 ( 𝑃 𝑄 ) → 𝑄 ( 𝑃 𝑆 ) ) )
24 simp22 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝑃𝑄 )
25 24 necomd ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → 𝑄𝑃 )
26 1 2 3 cvlatexch1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑄𝐴𝑆𝐴𝑃𝐴 ) ∧ 𝑄𝑃 ) → ( 𝑄 ( 𝑃 𝑆 ) → 𝑆 ( 𝑃 𝑄 ) ) )
27 7 9 11 10 25 26 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ( 𝑄 ( 𝑃 𝑆 ) → 𝑆 ( 𝑃 𝑄 ) ) )
28 23 27 syld ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ( 𝑧 ( 𝑃 𝑄 ) → 𝑆 ( 𝑃 𝑄 ) ) )
29 4 28 mtod ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ( 𝑃 𝑧 ) = ( 𝑆 𝑧 ) ) ) → ¬ 𝑧 ( 𝑃 𝑄 ) )