| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme21.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme21.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme21.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme21.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme21.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme21.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme21.f | 
							⊢ 𝐹  =  ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme21g.g | 
							⊢ 𝐺  =  ( ( 𝑇  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑇 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme21g.d | 
							⊢ 𝐷  =  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 )  | 
						
						
							| 10 | 
							
								
							 | 
							cdleme21g.y | 
							⊢ 𝑌  =  ( ( 𝑅  ∨  𝑇 )  ∧  𝑊 )  | 
						
						
							| 11 | 
							
								
							 | 
							cdleme21g.n | 
							⊢ 𝑁  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  𝐷 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							cdleme21g.o | 
							⊢ 𝑂  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺  ∨  𝑌 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑆  =  𝑇  →  ( 𝑆  ∨  𝑈 )  =  ( 𝑇  ∨  𝑈 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑆  =  𝑇  →  ( 𝑃  ∨  𝑆 )  =  ( 𝑃  ∨  𝑇 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq1d | 
							⊢ ( 𝑆  =  𝑇  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  =  ( ( 𝑃  ∨  𝑇 )  ∧  𝑊 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq2d | 
							⊢ ( 𝑆  =  𝑇  →  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) )  =  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑇 )  ∧  𝑊 ) ) )  | 
						
						
							| 17 | 
							
								13 16
							 | 
							oveq12d | 
							⊢ ( 𝑆  =  𝑇  →  ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  =  ( ( 𝑇  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑇 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 18 | 
							
								17 7 8
							 | 
							3eqtr4g | 
							⊢ ( 𝑆  =  𝑇  →  𝐹  =  𝐺 )  | 
						
						
							| 19 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑆  =  𝑇  →  ( 𝑅  ∨  𝑆 )  =  ( 𝑅  ∨  𝑇 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq1d | 
							⊢ ( 𝑆  =  𝑇  →  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 )  =  ( ( 𝑅  ∨  𝑇 )  ∧  𝑊 ) )  | 
						
						
							| 21 | 
							
								20 9 10
							 | 
							3eqtr4g | 
							⊢ ( 𝑆  =  𝑇  →  𝐷  =  𝑌 )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							oveq12d | 
							⊢ ( 𝑆  =  𝑇  →  ( 𝐹  ∨  𝐷 )  =  ( 𝐺  ∨  𝑌 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq2d | 
							⊢ ( 𝑆  =  𝑇  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  𝐷 ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺  ∨  𝑌 ) ) )  | 
						
						
							| 24 | 
							
								23 11 12
							 | 
							3eqtr4g | 
							⊢ ( 𝑆  =  𝑇  →  𝑁  =  𝑂 )  | 
						
						
							| 25 | 
							
								24
							 | 
							eqeq1d | 
							⊢ ( 𝑆  =  𝑇  →  ( 𝑁  =  𝑂  ↔  𝑂  =  𝑂 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simpl11 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  ∧  𝑆  ≠  𝑇 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							simpl12 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  ∧  𝑆  ≠  𝑇 )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simpl13 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  ∧  𝑆  ≠  𝑇 )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simpl21 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  ∧  𝑆  ≠  𝑇 )  →  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simpl22 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  ∧  𝑆  ≠  𝑇 )  →  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simpl23 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  ∧  𝑆  ≠  𝑇 )  →  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							simpl3l | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  ∧  𝑆  ≠  𝑇 )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 33 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  ∧  𝑆  ≠  𝑇 )  →  𝑆  ≠  𝑇 )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  ∧  𝑆  ≠  𝑇 )  →  ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simpl3r | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  ∧  𝑆  ≠  𝑇 )  →  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 36 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							cdleme21 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≠  𝑇 )  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑁  =  𝑂 )  | 
						
						
							| 37 | 
							
								26 27 28 29 30 31 34 35 36
							 | 
							syl332anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  ∧  𝑆  ≠  𝑇 )  →  𝑁  =  𝑂 )  | 
						
						
							| 38 | 
							
								
							 | 
							eqidd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑂  =  𝑂 )  | 
						
						
							| 39 | 
							
								25 37 38
							 | 
							pm2.61ne | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑇  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑁  =  𝑂 )  |