Metamath Proof Explorer


Theorem cdleme21k

Description: Eliminate S =/= T condition in cdleme21 . (Contributed by NM, 26-Dec-2012)

Ref Expression
Hypotheses cdleme21.l = ( le ‘ 𝐾 )
cdleme21.j = ( join ‘ 𝐾 )
cdleme21.m = ( meet ‘ 𝐾 )
cdleme21.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme21.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme21.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme21.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
cdleme21g.g 𝐺 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
cdleme21g.d 𝐷 = ( ( 𝑅 𝑆 ) 𝑊 )
cdleme21g.y 𝑌 = ( ( 𝑅 𝑇 ) 𝑊 )
cdleme21g.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 𝐷 ) )
cdleme21g.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐺 𝑌 ) )
Assertion cdleme21k ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) → 𝑁 = 𝑂 )

Proof

Step Hyp Ref Expression
1 cdleme21.l = ( le ‘ 𝐾 )
2 cdleme21.j = ( join ‘ 𝐾 )
3 cdleme21.m = ( meet ‘ 𝐾 )
4 cdleme21.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme21.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme21.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme21.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
8 cdleme21g.g 𝐺 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
9 cdleme21g.d 𝐷 = ( ( 𝑅 𝑆 ) 𝑊 )
10 cdleme21g.y 𝑌 = ( ( 𝑅 𝑇 ) 𝑊 )
11 cdleme21g.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 𝐷 ) )
12 cdleme21g.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐺 𝑌 ) )
13 oveq1 ( 𝑆 = 𝑇 → ( 𝑆 𝑈 ) = ( 𝑇 𝑈 ) )
14 oveq2 ( 𝑆 = 𝑇 → ( 𝑃 𝑆 ) = ( 𝑃 𝑇 ) )
15 14 oveq1d ( 𝑆 = 𝑇 → ( ( 𝑃 𝑆 ) 𝑊 ) = ( ( 𝑃 𝑇 ) 𝑊 ) )
16 15 oveq2d ( 𝑆 = 𝑇 → ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) = ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
17 13 16 oveq12d ( 𝑆 = 𝑇 → ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) ) = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) ) )
18 17 7 8 3eqtr4g ( 𝑆 = 𝑇𝐹 = 𝐺 )
19 oveq2 ( 𝑆 = 𝑇 → ( 𝑅 𝑆 ) = ( 𝑅 𝑇 ) )
20 19 oveq1d ( 𝑆 = 𝑇 → ( ( 𝑅 𝑆 ) 𝑊 ) = ( ( 𝑅 𝑇 ) 𝑊 ) )
21 20 9 10 3eqtr4g ( 𝑆 = 𝑇𝐷 = 𝑌 )
22 18 21 oveq12d ( 𝑆 = 𝑇 → ( 𝐹 𝐷 ) = ( 𝐺 𝑌 ) )
23 22 oveq2d ( 𝑆 = 𝑇 → ( ( 𝑃 𝑄 ) ( 𝐹 𝐷 ) ) = ( ( 𝑃 𝑄 ) ( 𝐺 𝑌 ) ) )
24 23 11 12 3eqtr4g ( 𝑆 = 𝑇𝑁 = 𝑂 )
25 24 eqeq1d ( 𝑆 = 𝑇 → ( 𝑁 = 𝑂𝑂 = 𝑂 ) )
26 simpl11 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) ∧ 𝑆𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
27 simpl12 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) ∧ 𝑆𝑇 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
28 simpl13 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) ∧ 𝑆𝑇 ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
29 simpl21 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) ∧ 𝑆𝑇 ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
30 simpl22 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) ∧ 𝑆𝑇 ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
31 simpl23 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) ∧ 𝑆𝑇 ) → ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) )
32 simpl3l ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) ∧ 𝑆𝑇 ) → 𝑃𝑄 )
33 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) ∧ 𝑆𝑇 ) → 𝑆𝑇 )
34 32 33 jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) ∧ 𝑆𝑇 ) → ( 𝑃𝑄𝑆𝑇 ) )
35 simpl3r ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) ∧ 𝑆𝑇 ) → ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) )
36 1 2 3 4 5 6 7 8 9 10 11 12 cdleme21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆𝑇 ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) → 𝑁 = 𝑂 )
37 26 27 28 29 30 31 34 35 36 syl332anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) ∧ 𝑆𝑇 ) → 𝑁 = 𝑂 )
38 eqidd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) → 𝑂 = 𝑂 )
39 25 37 38 pm2.61ne ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) → 𝑁 = 𝑂 )