| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme22.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdleme22.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdleme22.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdleme22.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdleme22.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdleme22.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
| 7 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 9 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
| 10 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≠ 𝑄 ) |
| 11 |
|
simp31l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ∈ 𝐴 ) |
| 12 |
|
simp31r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ≤ 𝑊 ) |
| 13 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
| 14 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝑇 ∈ 𝐴 ) |
| 15 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ) → 𝑉 ≤ ( 𝑇 ∨ 𝑉 ) ) |
| 16 |
13 14 11 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ≤ ( 𝑇 ∨ 𝑉 ) ) |
| 17 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) |
| 18 |
16 17
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 19 |
1 2 3 4 5 6
|
cdleme22aa |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 = 𝑈 ) |
| 20 |
7 8 9 10 11 12 18 19
|
syl133anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 = 𝑈 ) |