Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme22.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme22.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme22.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme22.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme22.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme22.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) |
8 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ≤ 𝑊 ) |
9 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
10 |
9
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ Lat ) |
11 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ∈ 𝐴 ) |
12 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
13 |
12 4
|
atbase |
⊢ ( 𝑉 ∈ 𝐴 → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
14 |
11 13
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ∈ ( Base ‘ 𝐾 ) ) |
15 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
16 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
17 |
12 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
9 15 16 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
19 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ 𝐻 ) |
20 |
12 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
22 |
12 1 3
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑉 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑉 ≤ 𝑊 ) ↔ 𝑉 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
23 |
10 14 18 21 22
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑉 ≤ 𝑊 ) ↔ 𝑉 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
24 |
7 8 23
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
25 |
24 6
|
breqtrrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 ≤ 𝑈 ) |
26 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
27 |
9 26
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ AtLat ) |
28 |
|
simp21r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑃 ≤ 𝑊 ) |
29 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≠ 𝑄 ) |
30 |
1 2 3 4 5 6
|
cdleme0a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → 𝑈 ∈ 𝐴 ) |
31 |
9 19 15 28 16 29 30
|
syl222anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑈 ∈ 𝐴 ) |
32 |
1 4
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑉 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑉 ≤ 𝑈 ↔ 𝑉 = 𝑈 ) ) |
33 |
27 11 31 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑉 ≤ 𝑈 ↔ 𝑉 = 𝑈 ) ) |
34 |
25 33
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 = 𝑈 ) |