| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme22.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme22.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme22.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme22.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme22.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme22.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							simp33 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simp32 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ≤  𝑊 )  | 
						
						
							| 9 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 10 | 
							
								9
							 | 
							hllatd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 11 | 
							
								
							 | 
							simp31 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 13 | 
							
								12 4
							 | 
							atbase | 
							⊢ ( 𝑉  ∈  𝐴  →  𝑉  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simp21l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 16 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 17 | 
							
								12 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 18 | 
							
								9 15 16 17
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 20 | 
							
								12 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 22 | 
							
								12 1 3
							 | 
							latlem12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑉  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑉  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑉  ≤  𝑊 )  ↔  𝑉  ≤  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  | 
						
						
							| 23 | 
							
								10 14 18 21 22
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑉  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑉  ≤  𝑊 )  ↔  𝑉  ≤  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) ) )  | 
						
						
							| 24 | 
							
								7 8 23
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ≤  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  | 
						
						
							| 25 | 
							
								24 6
							 | 
							breqtrrdi | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ≤  𝑈 )  | 
						
						
							| 26 | 
							
								
							 | 
							hlatl | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  AtLat )  | 
						
						
							| 27 | 
							
								9 26
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  AtLat )  | 
						
						
							| 28 | 
							
								
							 | 
							simp21r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑃  ≤  𝑊 )  | 
						
						
							| 29 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 30 | 
							
								1 2 3 4 5 6
							 | 
							cdleme0a | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑈  ∈  𝐴 )  | 
						
						
							| 31 | 
							
								9 19 15 28 16 29 30
							 | 
							syl222anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑈  ∈  𝐴 )  | 
						
						
							| 32 | 
							
								1 4
							 | 
							atcmp | 
							⊢ ( ( 𝐾  ∈  AtLat  ∧  𝑉  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  ( 𝑉  ≤  𝑈  ↔  𝑉  =  𝑈 ) )  | 
						
						
							| 33 | 
							
								27 11 31 32
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑉  ≤  𝑈  ↔  𝑉  =  𝑈 ) )  | 
						
						
							| 34 | 
							
								25 33
							 | 
							mpbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  =  𝑈 )  |