| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme22.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme22.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme22.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme22.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme22.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme22e.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme22e.f | 
							⊢ 𝐹  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme22e.n | 
							⊢ 𝑁  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme22e.o | 
							⊢ 𝑂  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 11 | 
							
								10
							 | 
							hllatd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 12 | 
							
								
							 | 
							simp21l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 15 | 
							
								14 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 16 | 
							
								10 12 13 15
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 18 | 
							
								
							 | 
							simp33l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑧  ∈  𝐴 )  | 
						
						
							| 19 | 
							
								1 2 3 4 5 6 7 14
							 | 
							cdleme1b | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  𝐹  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								10 17 12 13 18 19
							 | 
							syl23anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝐹  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simp23l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 22 | 
							
								14 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝑆  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 23 | 
							
								10 21 18 22
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑆  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 24 | 
							
								14 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 25 | 
							
								17 24
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 26 | 
							
								14 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑆  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 27 | 
							
								11 23 25 26
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑆  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 28 | 
							
								14 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝐹  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑆  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑧 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 29 | 
							
								11 20 27 28
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑧 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 30 | 
							
								14 1 3
							 | 
							latmle1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑧 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑧 )  ∧  𝑊 ) ) )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 31 | 
							
								11 16 29 30
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑧 )  ∧  𝑊 ) ) )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 32 | 
							
								8 31
							 | 
							eqbrtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑁  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simp23r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑇  ∈  𝐴 )  | 
						
						
							| 36 | 
							
								
							 | 
							simp31 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							simp32l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 38 | 
							
								
							 | 
							simp32r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 39 | 
							
								1 2 3 4 5 6
							 | 
							cdleme22a | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  𝑇  ∈  𝐴 )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  =  𝑈 )  | 
						
						
							| 40 | 
							
								33 34 13 35 36 37 38 39
							 | 
							syl133anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑉  =  𝑈 )  | 
						
						
							| 41 | 
							
								40
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑂  ∨  𝑉 )  =  ( 𝑂  ∨  𝑈 ) )  | 
						
						
							| 42 | 
							
								9
							 | 
							oveq1i | 
							⊢ ( 𝑂  ∨  𝑈 )  =  ( ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  𝑈 )  | 
						
						
							| 43 | 
							
								
							 | 
							simp21r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ¬  𝑃  ≤  𝑊 )  | 
						
						
							| 44 | 
							
								1 2 3 4 5 6
							 | 
							cdleme0a | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑈  ∈  𝐴 )  | 
						
						
							| 45 | 
							
								10 17 12 43 13 37 44
							 | 
							syl222anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑈  ∈  𝐴 )  | 
						
						
							| 46 | 
							
								14 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑇  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝑇  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 47 | 
							
								10 35 18 46
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑇  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 48 | 
							
								14 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑇  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 49 | 
							
								11 47 25 48
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 50 | 
							
								14 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝐹  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 51 | 
							
								11 20 49 50
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 52 | 
							
								1 2 3 4 5 6
							 | 
							cdlemeulpq | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  𝑈  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 53 | 
							
								10 17 12 13 52
							 | 
							syl22anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑈  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 54 | 
							
								14 1 2 3 4
							 | 
							atmod2i1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑈  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  𝑈 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) ) )  | 
						
						
							| 55 | 
							
								10 45 16 51 53 54
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  𝑈 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) ) )  | 
						
						
							| 56 | 
							
								42 55
							 | 
							eqtr2id | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  =  ( 𝑂  ∨  𝑈 ) )  | 
						
						
							| 57 | 
							
								41 56
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑂  ∨  𝑉 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) ) )  | 
						
						
							| 58 | 
							
								40
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑇  ∨  𝑉 )  =  ( 𝑇  ∨  𝑈 ) )  | 
						
						
							| 59 | 
							
								38 58
							 | 
							eqtr3d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑇  ∨  𝑈 ) )  | 
						
						
							| 60 | 
							
								14 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  ( 𝑇  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 61 | 
							
								10 35 45 60
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑇  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 62 | 
							
								14 4
							 | 
							atbase | 
							⊢ ( 𝑧  ∈  𝐴  →  𝑧  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 63 | 
							
								18 62
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑧  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 64 | 
							
								14 1 2
							 | 
							latlej1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑇  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑧  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑇  ∨  𝑈 )  ≤  ( ( 𝑇  ∨  𝑈 )  ∨  𝑧 ) )  | 
						
						
							| 65 | 
							
								11 61 63 64
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑇  ∨  𝑈 )  ≤  ( ( 𝑇  ∨  𝑈 )  ∨  𝑧 ) )  | 
						
						
							| 66 | 
							
								2 4
							 | 
							hlatj32 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑇  ∈  𝐴  ∧  𝑈  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( 𝑇  ∨  𝑈 )  ∨  𝑧 )  =  ( ( 𝑇  ∨  𝑧 )  ∨  𝑈 ) )  | 
						
						
							| 67 | 
							
								10 35 45 18 66
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑇  ∨  𝑈 )  ∨  𝑧 )  =  ( ( 𝑇  ∨  𝑧 )  ∨  𝑈 ) )  | 
						
						
							| 68 | 
							
								14 4
							 | 
							atbase | 
							⊢ ( 𝑈  ∈  𝐴  →  𝑈  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 69 | 
							
								45 68
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑈  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 70 | 
							
								14 2
							 | 
							latj32 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑧  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑧  ∨  𝑈 )  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( 𝑧  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  | 
						
						
							| 71 | 
							
								11 63 69 49 70
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑧  ∨  𝑈 )  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( 𝑧  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  | 
						
						
							| 72 | 
							
								14 2
							 | 
							latj32 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝐹  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 )  =  ( ( 𝐹  ∨  𝑈 )  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 73 | 
							
								11 20 49 69 72
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 )  =  ( ( 𝐹  ∨  𝑈 )  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 74 | 
							
								14 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝑃  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 75 | 
							
								10 12 18 74
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑃  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 76 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  𝑃  ≤  ( 𝑃  ∨  𝑧 ) )  | 
						
						
							| 77 | 
							
								10 12 18 76
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑃  ≤  ( 𝑃  ∨  𝑧 ) )  | 
						
						
							| 78 | 
							
								14 1 2 3 4
							 | 
							atmod3i1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  ( 𝑃  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑃  ≤  ( 𝑃  ∨  𝑧 ) )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( 𝑃  ∨  𝑧 )  ∧  ( 𝑃  ∨  𝑊 ) ) )  | 
						
						
							| 79 | 
							
								10 12 75 25 77 78
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( 𝑃  ∨  𝑧 )  ∧  ( 𝑃  ∨  𝑊 ) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							eqid | 
							⊢ ( 1. ‘ 𝐾 )  =  ( 1. ‘ 𝐾 )  | 
						
						
							| 81 | 
							
								1 2 80 4 5
							 | 
							lhpjat2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝑃  ∨  𝑊 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 82 | 
							
								10 17 34 81
							 | 
							syl21anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑃  ∨  𝑊 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑧 )  ∧  ( 𝑃  ∨  𝑊 ) )  =  ( ( 𝑃  ∨  𝑧 )  ∧  ( 1. ‘ 𝐾 ) ) )  | 
						
						
							| 84 | 
							
								
							 | 
							hlol | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL )  | 
						
						
							| 85 | 
							
								10 84
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝐾  ∈  OL )  | 
						
						
							| 86 | 
							
								14 3 80
							 | 
							olm11 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  ( 𝑃  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑧 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑃  ∨  𝑧 ) )  | 
						
						
							| 87 | 
							
								85 75 86
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑧 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑃  ∨  𝑧 ) )  | 
						
						
							| 88 | 
							
								79 83 87
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  =  ( 𝑃  ∨  𝑧 ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							oveq1d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑄 )  =  ( ( 𝑃  ∨  𝑧 )  ∨  𝑄 ) )  | 
						
						
							| 90 | 
							
								6
							 | 
							oveq2i | 
							⊢ ( 𝑄  ∨  𝑈 )  =  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  | 
						
						
							| 91 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑄  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 92 | 
							
								10 12 13 91
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑄  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 93 | 
							
								14 1 2 3 4
							 | 
							atmod3i1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑄  ∈  𝐴  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑄  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑄  ∨  𝑊 ) ) )  | 
						
						
							| 94 | 
							
								10 13 16 25 92 93
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑄  ∨  𝑊 ) ) )  | 
						
						
							| 95 | 
							
								90 94
							 | 
							eqtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑄  ∨  𝑈 )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑄  ∨  𝑊 ) ) )  | 
						
						
							| 96 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 97 | 
							
								1 2 80 4 5
							 | 
							lhpjat2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ( 𝑄  ∨  𝑊 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 98 | 
							
								10 17 96 97
							 | 
							syl21anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑄  ∨  𝑊 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑄  ∨  𝑊 ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 1. ‘ 𝐾 ) ) )  | 
						
						
							| 100 | 
							
								14 3 80
							 | 
							olm11 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 101 | 
							
								85 16 100
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 102 | 
							
								95 99 101
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑄  ∨  𝑈 )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							oveq1d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑄  ∨  𝑈 )  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( 𝑃  ∨  𝑄 )  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 104 | 
							
								14 4
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 105 | 
							
								12 104
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 106 | 
							
								14 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 107 | 
							
								11 75 25 106
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 108 | 
							
								14 4
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 109 | 
							
								13 108
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 110 | 
							
								14 2
							 | 
							latj32 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑃  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑄 )  =  ( ( 𝑃  ∨  𝑄 )  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 111 | 
							
								11 105 107 109 110
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑄 )  =  ( ( 𝑃  ∨  𝑄 )  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 112 | 
							
								103 111
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑄  ∨  𝑈 )  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( 𝑃  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑄 ) )  | 
						
						
							| 113 | 
							
								2 4
							 | 
							hlatj32 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑧  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 )  =  ( ( 𝑃  ∨  𝑧 )  ∨  𝑄 ) )  | 
						
						
							| 114 | 
							
								10 12 13 18 113
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 )  =  ( ( 𝑃  ∨  𝑧 )  ∨  𝑄 ) )  | 
						
						
							| 115 | 
							
								89 112 114
							 | 
							3eqtr4rd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 )  =  ( ( 𝑄  ∨  𝑈 )  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 116 | 
							
								14 2
							 | 
							latj32 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑄  ∨  𝑈 )  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  | 
						
						
							| 117 | 
							
								11 109 69 107 116
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑄  ∨  𝑈 )  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  | 
						
						
							| 118 | 
							
								115 117
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 )  =  ( ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  | 
						
						
							| 119 | 
							
								118
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑧  ∨  𝑈 )  ∧  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) )  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) ) )  | 
						
						
							| 120 | 
							
								14 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑧  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 121 | 
							
								11 16 63 120
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 122 | 
							
								14 1 2
							 | 
							latlej2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑧  ∈  ( Base ‘ 𝐾 ) )  →  𝑧  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) )  | 
						
						
							| 123 | 
							
								11 16 63 122
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑧  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) )  | 
						
						
							| 124 | 
							
								14 1 2 3 4
							 | 
							atmod1i1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑧  ∈  𝐴  ∧  𝑈  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑧  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) )  →  ( 𝑧  ∨  ( 𝑈  ∧  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) ) )  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) ) )  | 
						
						
							| 125 | 
							
								10 18 69 121 123 124
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑧  ∨  ( 𝑈  ∧  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) ) )  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) ) )  | 
						
						
							| 126 | 
							
								7
							 | 
							oveq1i | 
							⊢ ( 𝐹  ∨  𝑈 )  =  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  𝑈 )  | 
						
						
							| 127 | 
							
								14 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑧  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  ( 𝑧  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 128 | 
							
								10 18 45 127
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑧  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 129 | 
							
								14 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 130 | 
							
								11 109 107 129
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 131 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑧  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  𝑈  ≤  ( 𝑧  ∨  𝑈 ) )  | 
						
						
							| 132 | 
							
								10 18 45 131
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑈  ≤  ( 𝑧  ∨  𝑈 ) )  | 
						
						
							| 133 | 
							
								14 1 2 3 4
							 | 
							atmod2i1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑈  ∈  𝐴  ∧  ( 𝑧  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑈  ≤  ( 𝑧  ∨  𝑈 ) )  →  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  𝑈 )  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) ) )  | 
						
						
							| 134 | 
							
								10 45 128 130 132 133
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  𝑈 )  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) ) )  | 
						
						
							| 135 | 
							
								126 134
							 | 
							eqtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝐹  ∨  𝑈 )  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) ) )  | 
						
						
							| 136 | 
							
								119 125 135
							 | 
							3eqtr4rd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝐹  ∨  𝑈 )  =  ( 𝑧  ∨  ( 𝑈  ∧  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) ) ) )  | 
						
						
							| 137 | 
							
								14 1 2
							 | 
							latlej1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑧  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  𝑄 )  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) )  | 
						
						
							| 138 | 
							
								11 16 63 137
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑃  ∨  𝑄 )  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) )  | 
						
						
							| 139 | 
							
								14 1 11 69 16 121 53 138
							 | 
							lattrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑈  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) )  | 
						
						
							| 140 | 
							
								14 1 3
							 | 
							latleeqm1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑈  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑈  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 )  ↔  ( 𝑈  ∧  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) )  =  𝑈 ) )  | 
						
						
							| 141 | 
							
								11 69 121 140
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑈  ≤  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 )  ↔  ( 𝑈  ∧  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) )  =  𝑈 ) )  | 
						
						
							| 142 | 
							
								139 141
							 | 
							mpbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑈  ∧  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) )  =  𝑈 )  | 
						
						
							| 143 | 
							
								142
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑧  ∨  ( 𝑈  ∧  ( ( 𝑃  ∨  𝑄 )  ∨  𝑧 ) ) )  =  ( 𝑧  ∨  𝑈 ) )  | 
						
						
							| 144 | 
							
								136 143
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝐹  ∨  𝑈 )  =  ( 𝑧  ∨  𝑈 ) )  | 
						
						
							| 145 | 
							
								144
							 | 
							oveq1d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝐹  ∨  𝑈 )  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( 𝑧  ∨  𝑈 )  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 146 | 
							
								73 145
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 )  =  ( ( 𝑧  ∨  𝑈 )  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 147 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑇  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  𝑧  ≤  ( 𝑇  ∨  𝑧 ) )  | 
						
						
							| 148 | 
							
								10 35 18 147
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑧  ≤  ( 𝑇  ∨  𝑧 ) )  | 
						
						
							| 149 | 
							
								14 1 2 3 4
							 | 
							atmod3i1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑧  ∈  𝐴  ∧  ( 𝑇  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑧  ≤  ( 𝑇  ∨  𝑧 ) )  →  ( 𝑧  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( 𝑇  ∨  𝑧 )  ∧  ( 𝑧  ∨  𝑊 ) ) )  | 
						
						
							| 150 | 
							
								10 18 47 25 148 149
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑧  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( 𝑇  ∨  𝑧 )  ∧  ( 𝑧  ∨  𝑊 ) ) )  | 
						
						
							| 151 | 
							
								
							 | 
							simp33 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) )  | 
						
						
							| 152 | 
							
								1 2 80 4 5
							 | 
							lhpjat2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) )  →  ( 𝑧  ∨  𝑊 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 153 | 
							
								10 17 151 152
							 | 
							syl21anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑧  ∨  𝑊 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 154 | 
							
								153
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑇  ∨  𝑧 )  ∧  ( 𝑧  ∨  𝑊 ) )  =  ( ( 𝑇  ∨  𝑧 )  ∧  ( 1. ‘ 𝐾 ) ) )  | 
						
						
							| 155 | 
							
								150 154
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑧  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( 𝑇  ∨  𝑧 )  ∧  ( 1. ‘ 𝐾 ) ) )  | 
						
						
							| 156 | 
							
								14 3 80
							 | 
							olm11 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  ( 𝑇  ∨  𝑧 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑇  ∨  𝑧 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑇  ∨  𝑧 ) )  | 
						
						
							| 157 | 
							
								85 47 156
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑇  ∨  𝑧 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑇  ∨  𝑧 ) )  | 
						
						
							| 158 | 
							
								155 157
							 | 
							eqtr2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑇  ∨  𝑧 )  =  ( 𝑧  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 159 | 
							
								158
							 | 
							oveq1d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑇  ∨  𝑧 )  ∨  𝑈 )  =  ( ( 𝑧  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  | 
						
						
							| 160 | 
							
								71 146 159
							 | 
							3eqtr4rd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑇  ∨  𝑧 )  ∨  𝑈 )  =  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  | 
						
						
							| 161 | 
							
								67 160
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑇  ∨  𝑈 )  ∨  𝑧 )  =  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  | 
						
						
							| 162 | 
							
								65 161
							 | 
							breqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑇  ∨  𝑈 )  ≤  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  | 
						
						
							| 163 | 
							
								59 162
							 | 
							eqbrtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑃  ∨  𝑄 )  ≤  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  | 
						
						
							| 164 | 
							
								14 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 165 | 
							
								11 51 69 164
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 166 | 
							
								14 1 3
							 | 
							latleeqm1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ≤  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 )  ↔  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  =  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 167 | 
							
								11 16 165 166
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ≤  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 )  ↔  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  =  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 168 | 
							
								163 167
							 | 
							mpbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) )  ∨  𝑈 ) )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 169 | 
							
								57 168
							 | 
							eqtr2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑂  ∨  𝑉 ) )  | 
						
						
							| 170 | 
							
								32 169
							 | 
							breqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑁  ≤  ( 𝑂  ∨  𝑉 ) )  |