Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme22.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme22.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme22.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme22.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme22.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme22e.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
cdleme22e.f |
⊢ 𝐹 = ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
8 |
|
cdleme22e.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme22e.o |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
10 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝐾 ∈ HL ) |
11 |
10
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝐾 ∈ Lat ) |
12 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑃 ∈ 𝐴 ) |
13 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑄 ∈ 𝐴 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
15 |
14 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
10 12 13 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐻 ) |
18 |
|
simp33l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑧 ∈ 𝐴 ) |
19 |
1 2 3 4 5 6 7 14
|
cdleme1b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) ) |
20 |
10 17 12 13 18 19
|
syl23anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) ) |
21 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑆 ∈ 𝐴 ) |
22 |
14 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
23 |
10 21 18 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑆 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
24 |
14 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
25 |
17 24
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
26 |
14 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑆 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
27 |
11 23 25 26
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑆 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
28 |
14 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑆 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
11 20 27 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
30 |
14 1 3
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
31 |
11 16 29 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
32 |
8 31
|
eqbrtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑁 ≤ ( 𝑃 ∨ 𝑄 ) ) |
33 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
34 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
35 |
|
simp23r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑇 ∈ 𝐴 ) |
36 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
37 |
|
simp32l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑃 ≠ 𝑄 ) |
38 |
|
simp32r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) |
39 |
1 2 3 4 5 6
|
cdleme22a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 = 𝑈 ) |
40 |
33 34 13 35 36 37 38 39
|
syl133anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑉 = 𝑈 ) |
41 |
40
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑂 ∨ 𝑉 ) = ( 𝑂 ∨ 𝑈 ) ) |
42 |
9
|
oveq1i |
⊢ ( 𝑂 ∨ 𝑈 ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ 𝑈 ) |
43 |
|
simp21r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ¬ 𝑃 ≤ 𝑊 ) |
44 |
1 2 3 4 5 6
|
cdleme0a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → 𝑈 ∈ 𝐴 ) |
45 |
10 17 12 43 13 37 44
|
syl222anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑈 ∈ 𝐴 ) |
46 |
14 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
47 |
10 35 18 46
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑇 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
48 |
14 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑇 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
49 |
11 47 25 48
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
50 |
14 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
51 |
11 20 49 50
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
52 |
1 2 3 4 5 6
|
cdlemeulpq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑈 ≤ ( 𝑃 ∨ 𝑄 ) ) |
53 |
10 17 12 13 52
|
syl22anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑈 ≤ ( 𝑃 ∨ 𝑄 ) ) |
54 |
14 1 2 3 4
|
atmod2i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑈 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ 𝑈 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
55 |
10 45 16 51 53 54
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ 𝑈 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
56 |
42 55
|
eqtr2id |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) = ( 𝑂 ∨ 𝑈 ) ) |
57 |
41 56
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑂 ∨ 𝑉 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
58 |
40
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑇 ∨ 𝑉 ) = ( 𝑇 ∨ 𝑈 ) ) |
59 |
38 58
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑇 ∨ 𝑈 ) ) |
60 |
14 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
61 |
10 35 45 60
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
62 |
14 4
|
atbase |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ( Base ‘ 𝐾 ) ) |
63 |
18 62
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐾 ) ) |
64 |
14 1 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑇 ∨ 𝑈 ) ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑧 ) ) |
65 |
11 61 63 64
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑇 ∨ 𝑈 ) ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑧 ) ) |
66 |
2 4
|
hlatj32 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑧 ) = ( ( 𝑇 ∨ 𝑧 ) ∨ 𝑈 ) ) |
67 |
10 35 45 18 66
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑧 ) = ( ( 𝑇 ∨ 𝑧 ) ∨ 𝑈 ) ) |
68 |
14 4
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
69 |
45 68
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
70 |
14 2
|
latj32 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑧 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
71 |
11 63 69 49 70
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑧 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
72 |
14 2
|
latj32 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) = ( ( 𝐹 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
73 |
11 20 49 69 72
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) = ( ( 𝐹 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
74 |
14 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
75 |
10 12 18 74
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
76 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑧 ) ) |
77 |
10 12 18 76
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑃 ≤ ( 𝑃 ∨ 𝑧 ) ) |
78 |
14 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑃 ≤ ( 𝑃 ∨ 𝑧 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑧 ) ∧ ( 𝑃 ∨ 𝑊 ) ) ) |
79 |
10 12 75 25 77 78
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑧 ) ∧ ( 𝑃 ∨ 𝑊 ) ) ) |
80 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
81 |
1 2 80 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
82 |
10 17 34 81
|
syl21anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
83 |
82
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑧 ) ∧ ( 𝑃 ∨ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
84 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
85 |
10 84
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝐾 ∈ OL ) |
86 |
14 3 80
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑃 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑧 ) ) |
87 |
85 75 86
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑧 ) ) |
88 |
79 83 87
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( 𝑃 ∨ 𝑧 ) ) |
89 |
88
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑄 ) = ( ( 𝑃 ∨ 𝑧 ) ∨ 𝑄 ) ) |
90 |
6
|
oveq2i |
⊢ ( 𝑄 ∨ 𝑈 ) = ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
91 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
92 |
10 12 13 91
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
93 |
14 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑊 ) ) ) |
94 |
10 13 16 25 92 93
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑊 ) ) ) |
95 |
90 94
|
eqtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑄 ∨ 𝑈 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑊 ) ) ) |
96 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
97 |
1 2 80 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑄 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
98 |
10 17 96 97
|
syl21anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑄 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
99 |
98
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
100 |
14 3 80
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
101 |
85 16 100
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
102 |
95 99 101
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑄 ∨ 𝑈 ) = ( 𝑃 ∨ 𝑄 ) ) |
103 |
102
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑄 ∨ 𝑈 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
104 |
14 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
105 |
12 104
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
106 |
14 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
107 |
11 75 25 106
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
108 |
14 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
109 |
13 108
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
110 |
14 2
|
latj32 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑄 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
111 |
11 105 107 109 110
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑄 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
112 |
103 111
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑄 ∨ 𝑈 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑄 ) ) |
113 |
2 4
|
hlatj32 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) = ( ( 𝑃 ∨ 𝑧 ) ∨ 𝑄 ) ) |
114 |
10 12 13 18 113
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) = ( ( 𝑃 ∨ 𝑧 ) ∨ 𝑄 ) ) |
115 |
89 112 114
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) = ( ( 𝑄 ∨ 𝑈 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
116 |
14 2
|
latj32 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ∨ 𝑈 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
117 |
11 109 69 107 116
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑄 ∨ 𝑈 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
118 |
115 117
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) = ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
119 |
118
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
120 |
14 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
121 |
11 16 63 120
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
122 |
14 1 2
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → 𝑧 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) |
123 |
11 16 63 122
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑧 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) |
124 |
14 1 2 3 4
|
atmod1i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) → ( 𝑧 ∨ ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) ) |
125 |
10 18 69 121 123 124
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑧 ∨ ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) ) |
126 |
7
|
oveq1i |
⊢ ( 𝐹 ∨ 𝑈 ) = ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ 𝑈 ) |
127 |
14 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑧 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑧 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
128 |
10 18 45 127
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑧 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
129 |
14 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
130 |
11 109 107 129
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
131 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑧 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ≤ ( 𝑧 ∨ 𝑈 ) ) |
132 |
10 18 45 131
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑈 ≤ ( 𝑧 ∨ 𝑈 ) ) |
133 |
14 1 2 3 4
|
atmod2i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑧 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑈 ≤ ( 𝑧 ∨ 𝑈 ) ) → ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ 𝑈 ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
134 |
10 45 128 130 132 133
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ 𝑈 ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
135 |
126 134
|
eqtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝐹 ∨ 𝑈 ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
136 |
119 125 135
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝐹 ∨ 𝑈 ) = ( 𝑧 ∨ ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) ) ) |
137 |
14 1 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) |
138 |
11 16 63 137
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) |
139 |
14 1 11 69 16 121 53 138
|
lattrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑈 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) |
140 |
14 1 3
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑈 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ↔ ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) = 𝑈 ) ) |
141 |
11 69 121 140
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑈 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ↔ ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) = 𝑈 ) ) |
142 |
139 141
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) = 𝑈 ) |
143 |
142
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑧 ∨ ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) ) = ( 𝑧 ∨ 𝑈 ) ) |
144 |
136 143
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝐹 ∨ 𝑈 ) = ( 𝑧 ∨ 𝑈 ) ) |
145 |
144
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝐹 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑧 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
146 |
73 145
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) = ( ( 𝑧 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
147 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≤ ( 𝑇 ∨ 𝑧 ) ) |
148 |
10 35 18 147
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑧 ≤ ( 𝑇 ∨ 𝑧 ) ) |
149 |
14 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑇 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 ≤ ( 𝑇 ∨ 𝑧 ) ) → ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑇 ∨ 𝑧 ) ∧ ( 𝑧 ∨ 𝑊 ) ) ) |
150 |
10 18 47 25 148 149
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑇 ∨ 𝑧 ) ∧ ( 𝑧 ∨ 𝑊 ) ) ) |
151 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) |
152 |
1 2 80 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) → ( 𝑧 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
153 |
10 17 151 152
|
syl21anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑧 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
154 |
153
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑇 ∨ 𝑧 ) ∧ ( 𝑧 ∨ 𝑊 ) ) = ( ( 𝑇 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
155 |
150 154
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑇 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
156 |
14 3 80
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑇 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑇 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑇 ∨ 𝑧 ) ) |
157 |
85 47 156
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑇 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑇 ∨ 𝑧 ) ) |
158 |
155 157
|
eqtr2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑇 ∨ 𝑧 ) = ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
159 |
158
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑇 ∨ 𝑧 ) ∨ 𝑈 ) = ( ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
160 |
71 146 159
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑇 ∨ 𝑧 ) ∨ 𝑈 ) = ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
161 |
67 160
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑧 ) = ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
162 |
65 161
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑇 ∨ 𝑈 ) ≤ ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
163 |
59 162
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
164 |
14 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
165 |
11 51 69 164
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
166 |
14 1 3
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) = ( 𝑃 ∨ 𝑄 ) ) ) |
167 |
11 16 165 166
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) = ( 𝑃 ∨ 𝑄 ) ) ) |
168 |
163 167
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
169 |
57 168
|
eqtr2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑂 ∨ 𝑉 ) ) |
170 |
32 169
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑁 ≤ ( 𝑂 ∨ 𝑉 ) ) |