Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme22.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme22.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme22.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme22.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme22.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme22eALT.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
cdleme22eALT.f |
⊢ 𝐹 = ( ( 𝑦 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑦 ) ∧ 𝑊 ) ) ) |
8 |
|
cdleme22eALT.g |
⊢ 𝐺 = ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme22eALT.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑦 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme22eALT.o |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
11 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝐾 ∈ HL ) |
12 |
11
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝐾 ∈ Lat ) |
13 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑃 ∈ 𝐴 ) |
14 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑄 ∈ 𝐴 ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
16 |
15 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
11 13 14 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑊 ∈ 𝐻 ) |
19 |
|
simp3ll |
⊢ ( ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑦 ∈ 𝐴 ) |
20 |
19
|
3ad2ant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑦 ∈ 𝐴 ) |
21 |
1 2 3 4 5 6 7 15
|
cdleme1b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) ) |
22 |
11 18 13 14 20 21
|
syl23anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) ) |
23 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑆 ∈ 𝐴 ) |
24 |
15 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
25 |
11 23 20 24
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑆 ∨ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ) |
26 |
15 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
27 |
18 26
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
28 |
15 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∨ 𝑦 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑆 ∨ 𝑦 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
29 |
12 25 27 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑆 ∨ 𝑦 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
30 |
15 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑆 ∨ 𝑦 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑦 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
31 |
12 22 29 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑦 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
32 |
15 1 3
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑦 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑦 ) ∧ 𝑊 ) ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
33 |
12 17 31 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑦 ) ∧ 𝑊 ) ) ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
34 |
9 33
|
eqbrtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑁 ≤ ( 𝑃 ∨ 𝑄 ) ) |
35 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
36 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑇 ∈ 𝐴 ) |
37 |
|
simp321 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑉 ∈ 𝐴 ) |
38 |
|
simp322 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑉 ≤ 𝑊 ) |
39 |
37 38
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
40 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
41 |
|
simp323 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) |
42 |
1 2 3 4 5 6
|
cdleme22a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) → 𝑉 = 𝑈 ) |
43 |
11 18 35 14 36 39 40 41 42
|
syl233anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑉 = 𝑈 ) |
44 |
43
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑂 ∨ 𝑉 ) = ( 𝑂 ∨ 𝑈 ) ) |
45 |
10
|
oveq1i |
⊢ ( 𝑂 ∨ 𝑈 ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ 𝑈 ) |
46 |
|
simp21r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ¬ 𝑃 ≤ 𝑊 ) |
47 |
1 2 3 4 5 6
|
cdleme0a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → 𝑈 ∈ 𝐴 ) |
48 |
11 18 13 46 14 40 47
|
syl222anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑈 ∈ 𝐴 ) |
49 |
|
simp3rl |
⊢ ( ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑧 ∈ 𝐴 ) |
50 |
49
|
3ad2ant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑧 ∈ 𝐴 ) |
51 |
1 2 3 4 5 6 8 15
|
cdleme1b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → 𝐺 ∈ ( Base ‘ 𝐾 ) ) |
52 |
11 18 13 14 50 51
|
syl23anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝐺 ∈ ( Base ‘ 𝐾 ) ) |
53 |
15 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
54 |
11 36 50 53
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑇 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
55 |
15 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑇 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
56 |
12 54 27 55
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
57 |
15 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝐺 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
58 |
12 52 56 57
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
59 |
1 2 3 4 5 6
|
cdlemeulpq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑈 ≤ ( 𝑃 ∨ 𝑄 ) ) |
60 |
11 18 13 14 59
|
syl22anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑈 ≤ ( 𝑃 ∨ 𝑄 ) ) |
61 |
15 1 2 3 4
|
atmod2i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑈 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ 𝑈 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
62 |
11 48 17 58 60 61
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ 𝑈 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
63 |
45 62
|
eqtr2id |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) = ( 𝑂 ∨ 𝑈 ) ) |
64 |
43
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑇 ∨ 𝑉 ) = ( 𝑇 ∨ 𝑈 ) ) |
65 |
41 64
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑇 ∨ 𝑈 ) ) |
66 |
15 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
67 |
11 36 48 66
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
68 |
15 4
|
atbase |
⊢ ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ( Base ‘ 𝐾 ) ) |
69 |
50 68
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑧 ∈ ( Base ‘ 𝐾 ) ) |
70 |
15 1 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑇 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑇 ∨ 𝑈 ) ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑧 ) ) |
71 |
12 67 69 70
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑇 ∨ 𝑈 ) ≤ ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑧 ) ) |
72 |
2 4
|
hlatj32 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑧 ) = ( ( 𝑇 ∨ 𝑧 ) ∨ 𝑈 ) ) |
73 |
11 36 48 50 72
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑧 ) = ( ( 𝑇 ∨ 𝑧 ) ∨ 𝑈 ) ) |
74 |
15 4
|
atbase |
⊢ ( 𝑈 ∈ 𝐴 → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
75 |
48 74
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑈 ∈ ( Base ‘ 𝐾 ) ) |
76 |
15 2
|
latj32 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑧 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑧 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
77 |
12 69 75 56 76
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑧 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
78 |
15 2
|
latj32 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐺 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) = ( ( 𝐺 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
79 |
12 52 56 75 78
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) = ( ( 𝐺 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
80 |
15 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
81 |
11 13 50 80
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑃 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
82 |
1 2 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑧 ) ) |
83 |
11 13 50 82
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑃 ≤ ( 𝑃 ∨ 𝑧 ) ) |
84 |
15 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑃 ≤ ( 𝑃 ∨ 𝑧 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑧 ) ∧ ( 𝑃 ∨ 𝑊 ) ) ) |
85 |
11 13 81 27 83 84
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑧 ) ∧ ( 𝑃 ∨ 𝑊 ) ) ) |
86 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
87 |
1 2 86 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
88 |
11 18 35 87
|
syl21anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑃 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
89 |
88
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑧 ) ∧ ( 𝑃 ∨ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
90 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
91 |
11 90
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝐾 ∈ OL ) |
92 |
15 3 86
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑃 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑧 ) ) |
93 |
91 81 92
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑧 ) ) |
94 |
85 89 93
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( 𝑃 ∨ 𝑧 ) ) |
95 |
94
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑄 ) = ( ( 𝑃 ∨ 𝑧 ) ∨ 𝑄 ) ) |
96 |
6
|
oveq2i |
⊢ ( 𝑄 ∨ 𝑈 ) = ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
97 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
98 |
11 13 14 97
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
99 |
15 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑊 ) ) ) |
100 |
11 14 17 27 98 99
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑊 ) ) ) |
101 |
96 100
|
eqtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑄 ∨ 𝑈 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑊 ) ) ) |
102 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
103 |
1 2 86 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑄 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
104 |
11 18 102 103
|
syl21anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑄 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
105 |
104
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
106 |
15 3 86
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
107 |
91 17 106
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
108 |
101 105 107
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑄 ∨ 𝑈 ) = ( 𝑃 ∨ 𝑄 ) ) |
109 |
108
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑄 ∨ 𝑈 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
110 |
15 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
111 |
13 110
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
112 |
15 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
113 |
12 81 27 112
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
114 |
15 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
115 |
14 114
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
116 |
15 2
|
latj32 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑄 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
117 |
12 111 113 115 116
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑄 ) = ( ( 𝑃 ∨ 𝑄 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
118 |
109 117
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑄 ∨ 𝑈 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑄 ) ) |
119 |
2 4
|
hlatj32 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) = ( ( 𝑃 ∨ 𝑧 ) ∨ 𝑄 ) ) |
120 |
11 13 14 50 119
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) = ( ( 𝑃 ∨ 𝑧 ) ∨ 𝑄 ) ) |
121 |
95 118 120
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) = ( ( 𝑄 ∨ 𝑈 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
122 |
15 2
|
latj32 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑄 ∨ 𝑈 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
123 |
12 115 75 113 122
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑄 ∨ 𝑈 ) ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
124 |
121 123
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) = ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
125 |
124
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
126 |
15 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
127 |
12 17 69 126
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) |
128 |
15 1 2
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → 𝑧 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) |
129 |
12 17 69 128
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑧 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) |
130 |
15 1 2 3 4
|
atmod1i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) → ( 𝑧 ∨ ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) ) |
131 |
11 50 75 127 129 130
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑧 ∨ ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) ) |
132 |
8
|
oveq1i |
⊢ ( 𝐺 ∨ 𝑈 ) = ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ 𝑈 ) |
133 |
15 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑧 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( 𝑧 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
134 |
11 50 48 133
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑧 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
135 |
15 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
136 |
12 115 113 135
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
137 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑧 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ≤ ( 𝑧 ∨ 𝑈 ) ) |
138 |
11 50 48 137
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑈 ≤ ( 𝑧 ∨ 𝑈 ) ) |
139 |
15 1 2 3 4
|
atmod2i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑈 ∈ 𝐴 ∧ ( 𝑧 ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑈 ≤ ( 𝑧 ∨ 𝑈 ) ) → ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ 𝑈 ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
140 |
11 48 134 136 138 139
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ 𝑈 ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
141 |
132 140
|
eqtrid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝐺 ∨ 𝑈 ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) ) |
142 |
125 131 141
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝐺 ∨ 𝑈 ) = ( 𝑧 ∨ ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) ) ) |
143 |
15 1 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑧 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) |
144 |
12 17 69 143
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) |
145 |
15 1 12 75 17 127 60 144
|
lattrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑈 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) |
146 |
15 1 3
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑈 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ↔ ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) = 𝑈 ) ) |
147 |
12 75 127 146
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑈 ≤ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ↔ ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) = 𝑈 ) ) |
148 |
145 147
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) = 𝑈 ) |
149 |
148
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑧 ∨ ( 𝑈 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑧 ) ) ) = ( 𝑧 ∨ 𝑈 ) ) |
150 |
142 149
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝐺 ∨ 𝑈 ) = ( 𝑧 ∨ 𝑈 ) ) |
151 |
150
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝐺 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑧 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
152 |
79 151
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) = ( ( 𝑧 ∨ 𝑈 ) ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
153 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ≤ ( 𝑇 ∨ 𝑧 ) ) |
154 |
11 36 50 153
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑧 ≤ ( 𝑇 ∨ 𝑧 ) ) |
155 |
15 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑇 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑧 ≤ ( 𝑇 ∨ 𝑧 ) ) → ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑇 ∨ 𝑧 ) ∧ ( 𝑧 ∨ 𝑊 ) ) ) |
156 |
11 50 54 27 154 155
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( 𝑇 ∨ 𝑧 ) ∧ ( 𝑧 ∨ 𝑊 ) ) ) |
157 |
|
simp33r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) |
158 |
1 2 86 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) → ( 𝑧 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
159 |
11 18 157 158
|
syl21anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑧 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
160 |
159
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑇 ∨ 𝑧 ) ∧ ( 𝑧 ∨ 𝑊 ) ) = ( ( 𝑇 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
161 |
15 3 86
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑇 ∨ 𝑧 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑇 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑇 ∨ 𝑧 ) ) |
162 |
91 54 161
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑇 ∨ 𝑧 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑇 ∨ 𝑧 ) ) |
163 |
156 160 162
|
3eqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑇 ∨ 𝑧 ) = ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
164 |
163
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑇 ∨ 𝑧 ) ∨ 𝑈 ) = ( ( 𝑧 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
165 |
77 152 164
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑇 ∨ 𝑧 ) ∨ 𝑈 ) = ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
166 |
73 165
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑇 ∨ 𝑈 ) ∨ 𝑧 ) = ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
167 |
71 166
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑇 ∨ 𝑈 ) ≤ ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
168 |
65 167
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) |
169 |
15 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑈 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
170 |
12 58 75 169
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) |
171 |
15 1 3
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) = ( 𝑃 ∨ 𝑄 ) ) ) |
172 |
12 17 170 171
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ≤ ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ↔ ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) = ( 𝑃 ∨ 𝑄 ) ) ) |
173 |
168 172
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ∨ 𝑈 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
174 |
44 63 173
|
3eqtr2rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑂 ∨ 𝑉 ) ) |
175 |
34 174
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝑇 ∈ 𝐴 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑊 ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) ) → 𝑁 ≤ ( 𝑂 ∨ 𝑉 ) ) |