| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme22.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme22.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme22.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme22.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme22.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme22f.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme22f.f | 
							⊢ 𝐹  =  ( ( 𝑇  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑇 )  ∧  𝑊 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme22f.n | 
							⊢ 𝑁  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp11l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 10 | 
							
								9
							 | 
							hllatd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 11 | 
							
								
							 | 
							simp12l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							simp13l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 14 | 
							
								13 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 15 | 
							
								9 11 12 14
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp11r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 17 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑇  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								1 2 3 4 5 6 7 13
							 | 
							cdleme1b | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  →  𝐹  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 19 | 
							
								9 16 11 12 17 18
							 | 
							syl23anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝐹  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp21l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 21 | 
							
								13 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 )  →  ( 𝑆  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 22 | 
							
								9 20 17 21
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  ( 𝑆  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 23 | 
							
								13 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 24 | 
							
								16 23
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 25 | 
							
								13 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∨  𝑇 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 26 | 
							
								10 22 24 25
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 27 | 
							
								13 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝐹  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 28 | 
							
								10 19 26 27
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 29 | 
							
								13 1 3
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 ) ) )  ≤  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 ) ) )  | 
						
						
							| 30 | 
							
								10 15 28 29
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 ) ) )  ≤  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							simp3l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑆  ≠  𝑇 )  | 
						
						
							| 33 | 
							
								
							 | 
							simp23l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑉  ∈  𝐴 )  | 
						
						
							| 34 | 
							
								
							 | 
							simp23r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑉  ≤  𝑊 )  | 
						
						
							| 35 | 
							
								
							 | 
							simp3r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑆  ≤  ( 𝑇  ∨  𝑉 ) )  | 
						
						
							| 36 | 
							
								2 4
							 | 
							hlatjcom | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑇  ∈  𝐴  ∧  𝑉  ∈  𝐴 )  →  ( 𝑇  ∨  𝑉 )  =  ( 𝑉  ∨  𝑇 ) )  | 
						
						
							| 37 | 
							
								9 17 33 36
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  ( 𝑇  ∨  𝑉 )  =  ( 𝑉  ∨  𝑇 ) )  | 
						
						
							| 38 | 
							
								35 37
							 | 
							breqtrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑆  ≤  ( 𝑉  ∨  𝑇 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							hlcvl | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  CvLat )  | 
						
						
							| 40 | 
							
								9 39
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝐾  ∈  CvLat )  | 
						
						
							| 41 | 
							
								1 2 4
							 | 
							cvlatexch2 | 
							⊢ ( ( 𝐾  ∈  CvLat  ∧  ( 𝑆  ∈  𝐴  ∧  𝑉  ∈  𝐴  ∧  𝑇  ∈  𝐴 )  ∧  𝑆  ≠  𝑇 )  →  ( 𝑆  ≤  ( 𝑉  ∨  𝑇 )  →  𝑉  ≤  ( 𝑆  ∨  𝑇 ) ) )  | 
						
						
							| 42 | 
							
								40 20 33 17 32 41
							 | 
							syl131anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  ( 𝑆  ≤  ( 𝑉  ∨  𝑇 )  →  𝑉  ≤  ( 𝑆  ∨  𝑇 ) ) )  | 
						
						
							| 43 | 
							
								38 42
							 | 
							mpd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑉  ≤  ( 𝑆  ∨  𝑇 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							eqid | 
							⊢ ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 )  =  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 )  | 
						
						
							| 45 | 
							
								1 2 3 4 5 44
							 | 
							cdleme22aa | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  𝑆  ≠  𝑇 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊  ∧  𝑉  ≤  ( 𝑆  ∨  𝑇 ) ) )  →  𝑉  =  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 ) )  | 
						
						
							| 46 | 
							
								9 16 31 17 32 33 34 43 45
							 | 
							syl233anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑉  =  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							oveq2d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  ( 𝐹  ∨  𝑉 )  =  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 ) ) )  | 
						
						
							| 48 | 
							
								30 47
							 | 
							breqtrrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑇 )  ∧  𝑊 ) ) )  ≤  ( 𝐹  ∨  𝑉 ) )  | 
						
						
							| 49 | 
							
								8 48
							 | 
							eqbrtrid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑇  ∈  𝐴  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( 𝑆  ≠  𝑇  ∧  𝑆  ≤  ( 𝑇  ∨  𝑉 ) ) )  →  𝑁  ≤  ( 𝐹  ∨  𝑉 ) )  |