Metamath Proof Explorer


Theorem cdleme22g

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 6th and 7th lines on p. 115. F , G represent f(s), f(t) respectively. If s <_ t \/ v and -. s <_ p \/ q, then f(s) <_ f(t) \/ v. (Contributed by NM, 6-Dec-2012)

Ref Expression
Hypotheses cdleme22.l = ( le ‘ 𝐾 )
cdleme22.j = ( join ‘ 𝐾 )
cdleme22.m = ( meet ‘ 𝐾 )
cdleme22.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme22.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme22g.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme22g.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
cdleme22g.g 𝐺 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
Assertion cdleme22g ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐹 ( 𝐺 𝑉 ) )

Proof

Step Hyp Ref Expression
1 cdleme22.l = ( le ‘ 𝐾 )
2 cdleme22.j = ( join ‘ 𝐾 )
3 cdleme22.m = ( meet ‘ 𝐾 )
4 cdleme22.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme22.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme22g.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme22g.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
8 cdleme22g.g 𝐺 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
9 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐾 ∈ HL )
10 9 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐾 ∈ Lat )
11 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
13 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
14 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
15 simp133 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑃𝑄 )
16 simp132 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
17 1 2 3 4 5 6 7 cdleme3fa ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐹𝐴 )
18 11 12 13 14 15 16 17 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐹𝐴 )
19 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) )
20 simp131 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ¬ 𝑇 ( 𝑃 𝑄 ) )
21 1 2 3 4 5 6 8 cdleme3fa ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ) ) → 𝐺𝐴 )
22 11 12 13 19 15 20 21 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐺𝐴 )
23 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
24 23 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝐹𝐴𝐺𝐴 ) → ( 𝐹 𝐺 ) ∈ ( Base ‘ 𝐾 ) )
25 9 18 22 24 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝐹 𝐺 ) ∈ ( Base ‘ 𝐾 ) )
26 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑊𝐻 )
27 23 5 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
28 26 27 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
29 23 1 3 latmle1 ( ( 𝐾 ∈ Lat ∧ ( 𝐹 𝐺 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐹 𝐺 ) 𝑊 ) ( 𝐹 𝐺 ) )
30 10 25 28 29 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( ( 𝐹 𝐺 ) 𝑊 ) ( 𝐹 𝐺 ) )
31 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑉𝐴𝑉 𝑊 ) )
32 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) )
33 1 2 3 4 5 cdleme22d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ) → 𝑉 = ( ( 𝑆 𝑇 ) 𝑊 ) )
34 11 14 19 31 32 33 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑉 = ( ( 𝑆 𝑇 ) 𝑊 ) )
35 simp32l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑆𝑇 )
36 15 35 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑃𝑄𝑆𝑇 ) )
37 1 2 3 4 5 6 7 8 cdleme16 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑃𝑄𝑆𝑇 ) ) ∧ ( ¬ 𝑆 ( 𝑃 𝑄 ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ) ) → ( ( 𝑆 𝑇 ) 𝑊 ) = ( ( 𝐹 𝐺 ) 𝑊 ) )
38 11 12 13 14 19 36 16 20 37 syl332anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( ( 𝑆 𝑇 ) 𝑊 ) = ( ( 𝐹 𝐺 ) 𝑊 ) )
39 34 38 eqtr2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( ( 𝐹 𝐺 ) 𝑊 ) = 𝑉 )
40 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝐹𝐴𝐺𝐴 ) → ( 𝐹 𝐺 ) = ( 𝐺 𝐹 ) )
41 9 18 22 40 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝐹 𝐺 ) = ( 𝐺 𝐹 ) )
42 30 39 41 3brtr3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑉 ( 𝐺 𝐹 ) )
43 hlcvl ( 𝐾 ∈ HL → 𝐾 ∈ CvLat )
44 9 43 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐾 ∈ CvLat )
45 simp33l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑉𝐴 )
46 simp33r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑉 𝑊 )
47 1 2 3 4 5 6 8 cdleme3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ) ) → ¬ 𝐺 𝑊 )
48 11 12 13 19 15 20 47 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ¬ 𝐺 𝑊 )
49 nbrne2 ( ( 𝑉 𝑊 ∧ ¬ 𝐺 𝑊 ) → 𝑉𝐺 )
50 46 48 49 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝑉𝐺 )
51 1 2 4 cvlatexch1 ( ( 𝐾 ∈ CvLat ∧ ( 𝑉𝐴𝐹𝐴𝐺𝐴 ) ∧ 𝑉𝐺 ) → ( 𝑉 ( 𝐺 𝐹 ) → 𝐹 ( 𝐺 𝑉 ) ) )
52 44 45 18 22 50 51 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → ( 𝑉 ( 𝐺 𝐹 ) → 𝐹 ( 𝐺 𝑉 ) ) )
53 42 52 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( ¬ 𝑇 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑃𝑄 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆𝑇𝑆 ( 𝑇 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐹 ( 𝐺 𝑉 ) )