| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme23.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme23.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme23.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme23.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme23.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme23.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme23.v | 
							⊢ 𝑉  =  ( ( 𝑆  ∨  𝑇 )  ∧  ( 𝑋  ∧  𝑊 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simp11l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 9 | 
							
								8
							 | 
							hllatd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 10 | 
							
								
							 | 
							simp12l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							simp13l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  𝑇  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								1 3 5
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 )  →  ( 𝑆  ∨  𝑇 )  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								8 10 11 12
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝑆  ∨  𝑇 )  ∈  𝐵 )  | 
						
						
							| 14 | 
							
								
							 | 
							simp2l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 15 | 
							
								
							 | 
							simp11r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 16 | 
							
								1 6
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  𝐵 )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  𝑊  ∈  𝐵 )  | 
						
						
							| 18 | 
							
								1 4
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  | 
						
						
							| 19 | 
							
								9 14 17 18
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  | 
						
						
							| 20 | 
							
								1 4
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∨  𝑇 )  ∈  𝐵  ∧  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  →  ( ( 𝑆  ∨  𝑇 )  ∧  ( 𝑋  ∧  𝑊 ) )  ∈  𝐵 )  | 
						
						
							| 21 | 
							
								9 13 19 20
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( ( 𝑆  ∨  𝑇 )  ∧  ( 𝑋  ∧  𝑊 ) )  ∈  𝐵 )  | 
						
						
							| 22 | 
							
								1 2 4
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∨  𝑇 )  ∈  𝐵  ∧  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  →  ( ( 𝑆  ∨  𝑇 )  ∧  ( 𝑋  ∧  𝑊 ) )  ≤  ( 𝑋  ∧  𝑊 ) )  | 
						
						
							| 23 | 
							
								9 13 19 22
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( ( 𝑆  ∨  𝑇 )  ∧  ( 𝑋  ∧  𝑊 ) )  ≤  ( 𝑋  ∧  𝑊 ) )  | 
						
						
							| 24 | 
							
								1 2 4
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( 𝑋  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 25 | 
							
								9 14 17 24
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝑋  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 26 | 
							
								1 2 9 21 19 17 23 25
							 | 
							lattrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( ( 𝑆  ∨  𝑇 )  ∧  ( 𝑋  ∧  𝑊 ) )  ≤  𝑊 )  | 
						
						
							| 27 | 
							
								7 26
							 | 
							eqbrtrid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  ( 𝑆  ≠  𝑇  ∧  ( 𝑆  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑇  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  𝑉  ≤  𝑊 )  |