Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme24.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleme24.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdleme24.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdleme24.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdleme24.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdleme24.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdleme24.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdleme24.f |
⊢ 𝐹 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme24.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme24.g |
⊢ 𝐺 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
11 |
|
cdleme24.o |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐺 ∨ ( ( 𝑅 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
12 |
|
simp111 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
simp112 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
14 |
|
simp113 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
15 |
|
simp12 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
16 |
|
simp2l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑠 ∈ 𝐴 ) |
17 |
|
simp3ll |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑠 ≤ 𝑊 ) |
18 |
16 17
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) |
19 |
|
simp2r |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑡 ∈ 𝐴 ) |
20 |
|
simp3rl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑡 ≤ 𝑊 ) |
21 |
19 20
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) |
22 |
|
simp13l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
23 |
|
simp3lr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) |
24 |
|
simp3rr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) |
25 |
|
simp13r |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
26 |
23 24 25
|
3jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
27 |
|
eqid |
⊢ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) = ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) |
28 |
|
eqid |
⊢ ( ( 𝑅 ∨ 𝑡 ) ∧ 𝑊 ) = ( ( 𝑅 ∨ 𝑡 ) ∧ 𝑊 ) |
29 |
2 3 4 5 6 7 8 10 27 28 9 11
|
cdleme21k |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑁 = 𝑂 ) |
30 |
12 13 14 15 18 21 22 26 29
|
syl332anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑁 = 𝑂 ) |
31 |
30
|
3exp |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑁 = 𝑂 ) ) ) |
32 |
31
|
ralrimivv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ∀ 𝑠 ∈ 𝐴 ∀ 𝑡 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑁 = 𝑂 ) ) |