Metamath Proof Explorer


Theorem cdleme24

Description: Quantified version of cdleme21k . (Contributed by NM, 26-Dec-2012)

Ref Expression
Hypotheses cdleme24.b 𝐵 = ( Base ‘ 𝐾 )
cdleme24.l = ( le ‘ 𝐾 )
cdleme24.j = ( join ‘ 𝐾 )
cdleme24.m = ( meet ‘ 𝐾 )
cdleme24.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme24.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme24.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme24.f 𝐹 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme24.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑅 𝑠 ) 𝑊 ) ) )
cdleme24.g 𝐺 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme24.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐺 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
Assertion cdleme24 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) → ∀ 𝑠𝐴𝑡𝐴 ( ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) → 𝑁 = 𝑂 ) )

Proof

Step Hyp Ref Expression
1 cdleme24.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme24.l = ( le ‘ 𝐾 )
3 cdleme24.j = ( join ‘ 𝐾 )
4 cdleme24.m = ( meet ‘ 𝐾 )
5 cdleme24.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme24.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme24.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme24.f 𝐹 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme24.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑅 𝑠 ) 𝑊 ) ) )
10 cdleme24.g 𝐺 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
11 cdleme24.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐺 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
12 simp111 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 simp112 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
14 simp113 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
15 simp12 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
16 simp2l ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑠𝐴 )
17 simp3ll ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑠 𝑊 )
18 16 17 jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) )
19 simp2r ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑡𝐴 )
20 simp3rl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑡 𝑊 )
21 19 20 jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) )
22 simp13l ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑃𝑄 )
23 simp3lr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑠 ( 𝑃 𝑄 ) )
24 simp3rr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑡 ( 𝑃 𝑄 ) )
25 simp13r ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑅 ( 𝑃 𝑄 ) )
26 23 24 25 3jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) )
27 eqid ( ( 𝑅 𝑠 ) 𝑊 ) = ( ( 𝑅 𝑠 ) 𝑊 )
28 eqid ( ( 𝑅 𝑡 ) 𝑊 ) = ( ( 𝑅 𝑡 ) 𝑊 )
29 2 3 4 5 6 7 8 10 27 28 9 11 cdleme21k ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑠 ( 𝑃 𝑄 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ) ) → 𝑁 = 𝑂 )
30 12 13 14 15 18 21 22 26 29 syl332anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) ∧ ( 𝑠𝐴𝑡𝐴 ) ∧ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑁 = 𝑂 )
31 30 3exp ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝑠𝐴𝑡𝐴 ) → ( ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) → 𝑁 = 𝑂 ) ) )
32 31 ralrimivv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) → ∀ 𝑠𝐴𝑡𝐴 ( ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ∧ ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) → 𝑁 = 𝑂 ) )