Metamath Proof Explorer


Theorem cdleme25cl

Description: Show closure of the unique element in cdleme25c . (Contributed by NM, 2-Feb-2013)

Ref Expression
Hypotheses cdleme24.b 𝐵 = ( Base ‘ 𝐾 )
cdleme24.l = ( le ‘ 𝐾 )
cdleme24.j = ( join ‘ 𝐾 )
cdleme24.m = ( meet ‘ 𝐾 )
cdleme24.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme24.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme24.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme24.f 𝐹 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme24.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑅 𝑠 ) 𝑊 ) ) )
cdleme25cl.i 𝐼 = ( 𝑢𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
Assertion cdleme25cl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) → 𝐼𝐵 )

Proof

Step Hyp Ref Expression
1 cdleme24.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme24.l = ( le ‘ 𝐾 )
3 cdleme24.j = ( join ‘ 𝐾 )
4 cdleme24.m = ( meet ‘ 𝐾 )
5 cdleme24.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme24.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme24.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme24.f 𝐹 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme24.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑅 𝑠 ) 𝑊 ) ) )
10 cdleme25cl.i 𝐼 = ( 𝑢𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
11 1 2 3 4 5 6 7 8 9 cdleme25c ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) → ∃! 𝑢𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
12 riotacl ( ∃! 𝑢𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) → ( 𝑢𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) ) ∈ 𝐵 )
13 11 12 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑢𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) ) ∈ 𝐵 )
14 10 13 eqeltrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑃𝑄𝑅 ( 𝑃 𝑄 ) ) ) → 𝐼𝐵 )