Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme25cv.f |
⊢ 𝐹 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
2 |
|
cdleme25cv.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
3 |
|
cdleme25cv.g |
⊢ 𝐺 = ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
4 |
|
cdleme25cv.o |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐺 ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
5 |
|
cdleme25cv.i |
⊢ 𝐼 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ) |
6 |
|
cdleme25cv.e |
⊢ 𝐸 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) |
7 |
|
breq1 |
⊢ ( 𝑠 = 𝑧 → ( 𝑠 ≤ 𝑊 ↔ 𝑧 ≤ 𝑊 ) ) |
8 |
7
|
notbid |
⊢ ( 𝑠 = 𝑧 → ( ¬ 𝑠 ≤ 𝑊 ↔ ¬ 𝑧 ≤ 𝑊 ) ) |
9 |
|
breq1 |
⊢ ( 𝑠 = 𝑧 → ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
10 |
9
|
notbid |
⊢ ( 𝑠 = 𝑧 → ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ↔ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑠 = 𝑧 → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ↔ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) |
12 |
|
oveq1 |
⊢ ( 𝑠 = 𝑧 → ( 𝑠 ∨ 𝑈 ) = ( 𝑧 ∨ 𝑈 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑠 = 𝑧 → ( 𝑃 ∨ 𝑠 ) = ( 𝑃 ∨ 𝑧 ) ) |
14 |
13
|
oveq1d |
⊢ ( 𝑠 = 𝑧 → ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑠 = 𝑧 → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) = ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
16 |
12 15
|
oveq12d |
⊢ ( 𝑠 = 𝑧 → ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) = ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑠 = 𝑧 → ( 𝑅 ∨ 𝑠 ) = ( 𝑅 ∨ 𝑧 ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝑠 = 𝑧 → ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) = ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) |
19 |
16 18
|
oveq12d |
⊢ ( 𝑠 = 𝑧 → ( ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) = ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑠 = 𝑧 → ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑠 = 𝑧 → ( 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ↔ 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) |
22 |
11 21
|
imbi12d |
⊢ ( 𝑠 = 𝑧 → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ) ↔ ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) ) |
23 |
22
|
cbvralvw |
⊢ ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ) ↔ ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) |
24 |
1
|
oveq1i |
⊢ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) = ( ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) |
25 |
24
|
oveq2i |
⊢ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
26 |
2 25
|
eqtri |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
27 |
26
|
eqeq2i |
⊢ ( 𝑢 = 𝑁 ↔ 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ) |
28 |
27
|
imbi2i |
⊢ ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ) ) |
29 |
28
|
ralbii |
⊢ ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ) ) |
30 |
3
|
oveq1i |
⊢ ( 𝐺 ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) |
31 |
30
|
oveq2i |
⊢ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐺 ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
32 |
4 31
|
eqtri |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
33 |
32
|
eqeq2i |
⊢ ( 𝑢 = 𝑂 ↔ 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) |
34 |
33
|
imbi2i |
⊢ ( ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ↔ ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) |
35 |
34
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) |
36 |
23 29 35
|
3bitr4i |
⊢ ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) |
37 |
36
|
a1i |
⊢ ( 𝑢 ∈ 𝐵 → ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) ) |
38 |
37
|
riotabiia |
⊢ ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ) = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) |
39 |
38 5 6
|
3eqtr4i |
⊢ 𝐼 = 𝐸 |