Metamath Proof Explorer


Theorem cdleme25cv

Description: Change bound variables in cdleme25c . (Contributed by NM, 2-Feb-2013)

Ref Expression
Hypotheses cdleme25cv.f 𝐹 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme25cv.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑅 𝑠 ) 𝑊 ) ) )
cdleme25cv.g 𝐺 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
cdleme25cv.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐺 ( ( 𝑅 𝑧 ) 𝑊 ) ) )
cdleme25cv.i 𝐼 = ( 𝑢𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
cdleme25cv.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
Assertion cdleme25cv 𝐼 = 𝐸

Proof

Step Hyp Ref Expression
1 cdleme25cv.f 𝐹 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
2 cdleme25cv.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑅 𝑠 ) 𝑊 ) ) )
3 cdleme25cv.g 𝐺 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
4 cdleme25cv.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐺 ( ( 𝑅 𝑧 ) 𝑊 ) ) )
5 cdleme25cv.i 𝐼 = ( 𝑢𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
6 cdleme25cv.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
7 breq1 ( 𝑠 = 𝑧 → ( 𝑠 𝑊𝑧 𝑊 ) )
8 7 notbid ( 𝑠 = 𝑧 → ( ¬ 𝑠 𝑊 ↔ ¬ 𝑧 𝑊 ) )
9 breq1 ( 𝑠 = 𝑧 → ( 𝑠 ( 𝑃 𝑄 ) ↔ 𝑧 ( 𝑃 𝑄 ) ) )
10 9 notbid ( 𝑠 = 𝑧 → ( ¬ 𝑠 ( 𝑃 𝑄 ) ↔ ¬ 𝑧 ( 𝑃 𝑄 ) ) )
11 8 10 anbi12d ( 𝑠 = 𝑧 → ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) ↔ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) )
12 oveq1 ( 𝑠 = 𝑧 → ( 𝑠 𝑈 ) = ( 𝑧 𝑈 ) )
13 oveq2 ( 𝑠 = 𝑧 → ( 𝑃 𝑠 ) = ( 𝑃 𝑧 ) )
14 13 oveq1d ( 𝑠 = 𝑧 → ( ( 𝑃 𝑠 ) 𝑊 ) = ( ( 𝑃 𝑧 ) 𝑊 ) )
15 14 oveq2d ( 𝑠 = 𝑧 → ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) = ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
16 12 15 oveq12d ( 𝑠 = 𝑧 → ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) ) )
17 oveq2 ( 𝑠 = 𝑧 → ( 𝑅 𝑠 ) = ( 𝑅 𝑧 ) )
18 17 oveq1d ( 𝑠 = 𝑧 → ( ( 𝑅 𝑠 ) 𝑊 ) = ( ( 𝑅 𝑧 ) 𝑊 ) )
19 16 18 oveq12d ( 𝑠 = 𝑧 → ( ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) ( ( 𝑅 𝑠 ) 𝑊 ) ) = ( ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) ) ( ( 𝑅 𝑧 ) 𝑊 ) ) )
20 19 oveq2d ( 𝑠 = 𝑧 → ( ( 𝑃 𝑄 ) ( ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) ( ( 𝑅 𝑠 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) ) ( ( 𝑅 𝑧 ) 𝑊 ) ) ) )
21 20 eqeq2d ( 𝑠 = 𝑧 → ( 𝑢 = ( ( 𝑃 𝑄 ) ( ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) ( ( 𝑅 𝑠 ) 𝑊 ) ) ) ↔ 𝑢 = ( ( 𝑃 𝑄 ) ( ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) ) ( ( 𝑅 𝑧 ) 𝑊 ) ) ) ) )
22 11 21 imbi12d ( 𝑠 = 𝑧 → ( ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = ( ( 𝑃 𝑄 ) ( ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) ( ( 𝑅 𝑠 ) 𝑊 ) ) ) ) ↔ ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = ( ( 𝑃 𝑄 ) ( ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) ) ( ( 𝑅 𝑧 ) 𝑊 ) ) ) ) ) )
23 22 cbvralvw ( ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = ( ( 𝑃 𝑄 ) ( ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) ( ( 𝑅 𝑠 ) 𝑊 ) ) ) ) ↔ ∀ 𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = ( ( 𝑃 𝑄 ) ( ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) ) ( ( 𝑅 𝑧 ) 𝑊 ) ) ) ) )
24 1 oveq1i ( 𝐹 ( ( 𝑅 𝑠 ) 𝑊 ) ) = ( ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) ( ( 𝑅 𝑠 ) 𝑊 ) )
25 24 oveq2i ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑅 𝑠 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) ( ( 𝑅 𝑠 ) 𝑊 ) ) )
26 2 25 eqtri 𝑁 = ( ( 𝑃 𝑄 ) ( ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) ( ( 𝑅 𝑠 ) 𝑊 ) ) )
27 26 eqeq2i ( 𝑢 = 𝑁𝑢 = ( ( 𝑃 𝑄 ) ( ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) ( ( 𝑅 𝑠 ) 𝑊 ) ) ) )
28 27 imbi2i ( ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = ( ( 𝑃 𝑄 ) ( ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) ( ( 𝑅 𝑠 ) 𝑊 ) ) ) ) )
29 28 ralbii ( ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = ( ( 𝑃 𝑄 ) ( ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) ( ( 𝑅 𝑠 ) 𝑊 ) ) ) ) )
30 3 oveq1i ( 𝐺 ( ( 𝑅 𝑧 ) 𝑊 ) ) = ( ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) ) ( ( 𝑅 𝑧 ) 𝑊 ) )
31 30 oveq2i ( ( 𝑃 𝑄 ) ( 𝐺 ( ( 𝑅 𝑧 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) ) ( ( 𝑅 𝑧 ) 𝑊 ) ) )
32 4 31 eqtri 𝑂 = ( ( 𝑃 𝑄 ) ( ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) ) ( ( 𝑅 𝑧 ) 𝑊 ) ) )
33 32 eqeq2i ( 𝑢 = 𝑂𝑢 = ( ( 𝑃 𝑄 ) ( ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) ) ( ( 𝑅 𝑧 ) 𝑊 ) ) ) )
34 33 imbi2i ( ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) ↔ ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = ( ( 𝑃 𝑄 ) ( ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) ) ( ( 𝑅 𝑧 ) 𝑊 ) ) ) ) )
35 34 ralbii ( ∀ 𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) ↔ ∀ 𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = ( ( 𝑃 𝑄 ) ( ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) ) ( ( 𝑅 𝑧 ) 𝑊 ) ) ) ) )
36 23 29 35 3bitr4i ( ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ∀ 𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
37 36 a1i ( 𝑢𝐵 → ( ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ∀ 𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) ) )
38 37 riotabiia ( 𝑢𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ¬ 𝑠 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) ) = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
39 38 5 6 3eqtr4i 𝐼 = 𝐸