| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme25cv.f | 
							⊢ 𝐹  =  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme25cv.n | 
							⊢ 𝑁  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme25cv.g | 
							⊢ 𝐺  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme25cv.o | 
							⊢ 𝑂  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme25cv.i | 
							⊢ 𝐼  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme25cv.e | 
							⊢ 𝐸  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑂 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑠  =  𝑧  →  ( 𝑠  ≤  𝑊  ↔  𝑧  ≤  𝑊 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							notbid | 
							⊢ ( 𝑠  =  𝑧  →  ( ¬  𝑠  ≤  𝑊  ↔  ¬  𝑧  ≤  𝑊 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑠  =  𝑧  →  ( 𝑠  ≤  ( 𝑃  ∨  𝑄 )  ↔  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							notbid | 
							⊢ ( 𝑠  =  𝑧  →  ( ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 )  ↔  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							anbi12d | 
							⊢ ( 𝑠  =  𝑧  →  ( ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  ↔  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑠  =  𝑧  →  ( 𝑠  ∨  𝑈 )  =  ( 𝑧  ∨  𝑈 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑠  =  𝑧  →  ( 𝑃  ∨  𝑠 )  =  ( 𝑃  ∨  𝑧 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq1d | 
							⊢ ( 𝑠  =  𝑧  →  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 )  =  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq2d | 
							⊢ ( 𝑠  =  𝑧  →  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) )  =  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							oveq12d | 
							⊢ ( 𝑠  =  𝑧  →  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑠  =  𝑧  →  ( 𝑅  ∨  𝑠 )  =  ( 𝑅  ∨  𝑧 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							oveq1d | 
							⊢ ( 𝑠  =  𝑧  →  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 )  =  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							oveq12d | 
							⊢ ( 𝑠  =  𝑧  →  ( ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) )  =  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq2d | 
							⊢ ( 𝑠  =  𝑧  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqeq2d | 
							⊢ ( 𝑠  =  𝑧  →  ( 𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) ) )  ↔  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 22 | 
							
								11 21
							 | 
							imbi12d | 
							⊢ ( 𝑠  =  𝑧  →  ( ( ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) ) ) )  ↔  ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) ) ) )  ↔  ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 24 | 
							
								1
							 | 
							oveq1i | 
							⊢ ( 𝐹  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) )  =  ( ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							oveq2i | 
							⊢ ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) ) )  | 
						
						
							| 26 | 
							
								2 25
							 | 
							eqtri | 
							⊢ 𝑁  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							eqeq2i | 
							⊢ ( 𝑢  =  𝑁  ↔  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							imbi2i | 
							⊢ ( ( ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 )  ↔  ( ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ralbii | 
							⊢ ( ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 )  ↔  ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑠 )  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 30 | 
							
								3
							 | 
							oveq1i | 
							⊢ ( 𝐺  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) )  =  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							oveq2i | 
							⊢ ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐺  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 32 | 
							
								4 31
							 | 
							eqtri | 
							⊢ 𝑂  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							eqeq2i | 
							⊢ ( 𝑢  =  𝑂  ↔  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							imbi2i | 
							⊢ ( ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑂 )  ↔  ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							ralbii | 
							⊢ ( ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑂 )  ↔  ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  ∨  ( ( 𝑅  ∨  𝑧 )  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 36 | 
							
								23 29 35
							 | 
							3bitr4i | 
							⊢ ( ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 )  ↔  ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑂 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							a1i | 
							⊢ ( 𝑢  ∈  𝐵  →  ( ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 )  ↔  ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑂 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							riotabiia | 
							⊢ ( ℩ 𝑢  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ¬  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 ) )  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑂 ) )  | 
						
						
							| 39 | 
							
								38 5 6
							 | 
							3eqtr4i | 
							⊢ 𝐼  =  𝐸  |