Metamath Proof Explorer


Theorem cdleme26e

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 4th line on p. 115. F , N , O represent f(z), f_z(s), f_z(t) respectively. When t \/ v = p \/ q, f_z(s) <_ f_z(t) \/ v. TODO: FIX COMMENT. (Contributed by NM, 2-Feb-2013)

Ref Expression
Hypotheses cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
cdleme26.l = ( le ‘ 𝐾 )
cdleme26.j = ( join ‘ 𝐾 )
cdleme26.m = ( meet ‘ 𝐾 )
cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme26e.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme26e.f 𝐹 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
cdleme26e.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑆 𝑧 ) 𝑊 ) ) )
cdleme26e.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑇 𝑧 ) 𝑊 ) ) )
cdleme26e.i 𝐼 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
cdleme26e.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
Assertion cdleme26e ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝐼 ( 𝐸 𝑉 ) )

Proof

Step Hyp Ref Expression
1 cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme26.l = ( le ‘ 𝐾 )
3 cdleme26.j = ( join ‘ 𝐾 )
4 cdleme26.m = ( meet ‘ 𝐾 )
5 cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme26e.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme26e.f 𝐹 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
9 cdleme26e.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑆 𝑧 ) 𝑊 ) ) )
10 cdleme26e.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑇 𝑧 ) 𝑊 ) ) )
11 cdleme26e.i 𝐼 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
12 cdleme26e.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
13 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
15 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
16 simp21l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝑆𝐴 )
17 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝑇𝐴 )
18 16 17 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ( 𝑆𝐴𝑇𝐴 ) )
19 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ( 𝑉𝐴𝑉 𝑊 ) )
20 simp311 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝑃𝑄 )
21 simp32l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) )
22 20 21 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ( 𝑃𝑄 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) )
23 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) )
24 2 3 4 5 6 7 8 9 10 cdleme22e ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴𝑇𝐴 ) ) ∧ ( ( 𝑉𝐴𝑉 𝑊 ) ∧ ( 𝑃𝑄 ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝑁 ( 𝑂 𝑉 ) )
25 13 14 15 18 19 22 23 24 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝑁 ( 𝑂 𝑉 ) )
26 simp21r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ¬ 𝑆 𝑊 )
27 simp312 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝑆 ( 𝑃 𝑄 ) )
28 1 2 3 4 5 6 7 8 9 11 cdleme25cl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ) ) → 𝐼𝐵 )
29 13 14 15 16 26 20 27 28 syl322anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝐼𝐵 )
30 simp33l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝑧𝐴 )
31 simp33r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ¬ 𝑧 𝑊 )
32 simp32r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ¬ 𝑧 ( 𝑃 𝑄 ) )
33 31 32 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) )
34 1 fvexi 𝐵 ∈ V
35 34 11 riotasv ( ( 𝐼𝐵𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → 𝐼 = 𝑁 )
36 29 30 33 35 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝐼 = 𝑁 )
37 simp22r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ¬ 𝑇 𝑊 )
38 simp313 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝑇 ( 𝑃 𝑄 ) )
39 1 2 3 4 5 6 7 8 10 12 cdleme25cl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑃𝑄𝑇 ( 𝑃 𝑄 ) ) ) → 𝐸𝐵 )
40 13 14 15 17 37 20 38 39 syl322anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝐸𝐵 )
41 34 12 riotasv ( ( 𝐸𝐵𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → 𝐸 = 𝑂 )
42 40 30 33 41 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝐸 = 𝑂 )
43 42 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → ( 𝐸 𝑉 ) = ( 𝑂 𝑉 ) )
44 25 36 43 3brtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝐼 ( 𝐸 𝑉 ) )