| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme26.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme26.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme26.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme26.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme26.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme26.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme26e.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme26e.f | 
							⊢ 𝐹  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme26e.n | 
							⊢ 𝑁  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdleme26e.o | 
							⊢ 𝑂  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdleme26e.i | 
							⊢ 𝐼  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							cdleme26e.e | 
							⊢ 𝐸  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑂 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp11 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp12 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simp13 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp21l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 17 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑇  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							jca | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp311 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 21 | 
							
								
							 | 
							simp32l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							jca | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simp33 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) )  | 
						
						
							| 24 | 
							
								2 3 4 5 6 7 8 9 10
							 | 
							cdleme22e | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑇  ∈  𝐴 ) )  ∧  ( ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑁  ≤  ( 𝑂  ∨  𝑉 ) )  | 
						
						
							| 25 | 
							
								13 14 15 18 19 22 23 24
							 | 
							syl133anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑁  ≤  ( 𝑂  ∨  𝑉 ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simp21r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ¬  𝑆  ≤  𝑊 )  | 
						
						
							| 27 | 
							
								
							 | 
							simp312 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 28 | 
							
								1 2 3 4 5 6 7 8 9 11
							 | 
							cdleme25cl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐼  ∈  𝐵 )  | 
						
						
							| 29 | 
							
								13 14 15 16 26 20 27 28
							 | 
							syl322anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝐼  ∈  𝐵 )  | 
						
						
							| 30 | 
							
								
							 | 
							simp33l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑧  ∈  𝐴 )  | 
						
						
							| 31 | 
							
								
							 | 
							simp33r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ¬  𝑧  ≤  𝑊 )  | 
						
						
							| 32 | 
							
								
							 | 
							simp32r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							jca | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 34 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 35 | 
							
								34 11
							 | 
							riotasv | 
							⊢ ( ( 𝐼  ∈  𝐵  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐼  =  𝑁 )  | 
						
						
							| 36 | 
							
								29 30 33 35
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝐼  =  𝑁 )  | 
						
						
							| 37 | 
							
								
							 | 
							simp22r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ¬  𝑇  ≤  𝑊 )  | 
						
						
							| 38 | 
							
								
							 | 
							simp313 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 39 | 
							
								1 2 3 4 5 6 7 8 10 12
							 | 
							cdleme25cl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐸  ∈  𝐵 )  | 
						
						
							| 40 | 
							
								13 14 15 17 37 20 38 39
							 | 
							syl322anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝐸  ∈  𝐵 )  | 
						
						
							| 41 | 
							
								34 12
							 | 
							riotasv | 
							⊢ ( ( 𝐸  ∈  𝐵  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐸  =  𝑂 )  | 
						
						
							| 42 | 
							
								40 30 33 41
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝐸  =  𝑂 )  | 
						
						
							| 43 | 
							
								42
							 | 
							oveq1d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  ( 𝐸  ∨  𝑉 )  =  ( 𝑂  ∨  𝑉 ) )  | 
						
						
							| 44 | 
							
								25 36 43
							 | 
							3brtr4d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝐼  ≤  ( 𝐸  ∨  𝑉 ) )  |