Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme26.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleme26.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdleme26.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdleme26.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdleme26.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdleme26.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdleme26e.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdleme26e.f |
⊢ 𝐹 = ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme26e.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑆 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme26e.o |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑇 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
11 |
|
cdleme26e.i |
⊢ 𝐼 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ) |
12 |
|
cdleme26e.e |
⊢ 𝐸 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) |
13 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
15 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
16 |
|
simp21l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑆 ∈ 𝐴 ) |
17 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑇 ∈ 𝐴 ) |
18 |
16 17
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) |
19 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
20 |
|
simp311 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑃 ≠ 𝑄 ) |
21 |
|
simp32l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) |
22 |
20 21
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ) |
23 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) |
24 |
2 3 4 5 6 7 8 9 10
|
cdleme22e |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) ) ∧ ( ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑁 ≤ ( 𝑂 ∨ 𝑉 ) ) |
25 |
13 14 15 18 19 22 23 24
|
syl133anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑁 ≤ ( 𝑂 ∨ 𝑉 ) ) |
26 |
|
simp21r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ¬ 𝑆 ≤ 𝑊 ) |
27 |
|
simp312 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
28 |
1 2 3 4 5 6 7 8 9 11
|
cdleme25cl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐼 ∈ 𝐵 ) |
29 |
13 14 15 16 26 20 27 28
|
syl322anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝐼 ∈ 𝐵 ) |
30 |
|
simp33l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑧 ∈ 𝐴 ) |
31 |
|
simp33r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ¬ 𝑧 ≤ 𝑊 ) |
32 |
|
simp32r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) |
33 |
31 32
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
34 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
35 |
34 11
|
riotasv |
⊢ ( ( 𝐼 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐼 = 𝑁 ) |
36 |
29 30 33 35
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝐼 = 𝑁 ) |
37 |
|
simp22r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ¬ 𝑇 ≤ 𝑊 ) |
38 |
|
simp313 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) |
39 |
1 2 3 4 5 6 7 8 10 12
|
cdleme25cl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐸 ∈ 𝐵 ) |
40 |
13 14 15 17 37 20 38 39
|
syl322anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝐸 ∈ 𝐵 ) |
41 |
34 12
|
riotasv |
⊢ ( ( 𝐸 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴 ∧ ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐸 = 𝑂 ) |
42 |
40 30 33 41
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝐸 = 𝑂 ) |
43 |
42
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → ( 𝐸 ∨ 𝑉 ) = ( 𝑂 ∨ 𝑉 ) ) |
44 |
25 36 43
|
3brtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑇 ∨ 𝑉 ) = ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ¬ 𝑧 ≤ 𝑊 ) ) ) → 𝐼 ≤ ( 𝐸 ∨ 𝑉 ) ) |