| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme26.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme26.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme26.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme26.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme26.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme26.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme26e.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme26e.f | 
							⊢ 𝐹  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme26e.n | 
							⊢ 𝑁  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑆  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdleme26e.o | 
							⊢ 𝑂  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐹  ∨  ( ( 𝑇  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdleme26e.i | 
							⊢ 𝐼  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							cdleme26e.e | 
							⊢ 𝐸  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑂 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp11l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 14 | 
							
								
							 | 
							simp11r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 15 | 
							
								
							 | 
							simp12 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp13 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							simp3l1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 18 | 
							
								2 3 5 6
							 | 
							cdlemb2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄 )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 19 | 
							
								13 14 15 16 17 18
							 | 
							syl221anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  →  ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑧 ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑧 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 )  | 
						
						
							| 22 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑧 𝐵  | 
						
						
							| 23 | 
							
								21 22
							 | 
							nfriota | 
							⊢ Ⅎ 𝑧 ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 ) )  | 
						
						
							| 24 | 
							
								11 23
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑧 𝐼  | 
						
						
							| 25 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑧  ≤   | 
						
						
							| 26 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑧 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑂 )  | 
						
						
							| 27 | 
							
								26 22
							 | 
							nfriota | 
							⊢ Ⅎ 𝑧 ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑂 ) )  | 
						
						
							| 28 | 
							
								12 27
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑧 𝐸  | 
						
						
							| 29 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑧  ∨   | 
						
						
							| 30 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑧 𝑉  | 
						
						
							| 31 | 
							
								28 29 30
							 | 
							nfov | 
							⊢ Ⅎ 𝑧 ( 𝐸  ∨  𝑉 )  | 
						
						
							| 32 | 
							
								24 25 31
							 | 
							nfbr | 
							⊢ Ⅎ 𝑧 𝐼  ≤  ( 𝐸  ∨  𝑉 )  | 
						
						
							| 33 | 
							
								
							 | 
							simp111 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simp112 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simp113 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							simp121 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							simp122 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simp123 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							simp13l | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							simp13r | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simp3r | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑧  ∈  𝐴 )  | 
						
						
							| 44 | 
							
								
							 | 
							simp3l | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑧  ≤  𝑊 )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) )  | 
						
						
							| 46 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							cdleme26e | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑧  ∈  𝐴  ∧  ¬  𝑧  ≤  𝑊 ) ) )  →  𝐼  ≤  ( 𝐸  ∨  𝑉 ) )  | 
						
						
							| 47 | 
							
								33 34 35 36 37 38 39 42 45 46
							 | 
							syl333anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  ∧  𝑧  ∈  𝐴  ∧  ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐼  ≤  ( 𝐸  ∨  𝑉 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							3exp | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑧  ∈  𝐴  →  ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐼  ≤  ( 𝐸  ∨  𝑉 ) ) ) )  | 
						
						
							| 49 | 
							
								20 32 48
							 | 
							rexlimd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  →  ( ∃ 𝑧  ∈  𝐴 ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐼  ≤  ( 𝐸  ∨  𝑉 ) ) )  | 
						
						
							| 50 | 
							
								19 49
							 | 
							mpd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  ( 𝑇  ∈  𝐴  ∧  ¬  𝑇  ≤  𝑊 )  ∧  ( 𝑉  ∈  𝐴  ∧  𝑉  ≤  𝑊 ) )  ∧  ( ( 𝑃  ≠  𝑄  ∧  𝑆  ≤  ( 𝑃  ∨  𝑄 )  ∧  𝑇  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑇  ∨  𝑉 )  =  ( 𝑃  ∨  𝑄 ) ) )  →  𝐼  ≤  ( 𝐸  ∨  𝑉 ) )  |