Metamath Proof Explorer


Theorem cdleme26ee

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 4th line on p. 115. F , N , O represent f(z), f_z(s), f_z(t) respectively. When t \/ v = p \/ q, f_z(s) <_ f_z(t) \/ v. TODO: FIX COMMENT. (Contributed by NM, 2-Feb-2013)

Ref Expression
Hypotheses cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
cdleme26.l = ( le ‘ 𝐾 )
cdleme26.j = ( join ‘ 𝐾 )
cdleme26.m = ( meet ‘ 𝐾 )
cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme26e.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme26e.f 𝐹 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
cdleme26e.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑆 𝑧 ) 𝑊 ) ) )
cdleme26e.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑇 𝑧 ) 𝑊 ) ) )
cdleme26e.i 𝐼 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
cdleme26e.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
Assertion cdleme26ee ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) → 𝐼 ( 𝐸 𝑉 ) )

Proof

Step Hyp Ref Expression
1 cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme26.l = ( le ‘ 𝐾 )
3 cdleme26.j = ( join ‘ 𝐾 )
4 cdleme26.m = ( meet ‘ 𝐾 )
5 cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme26e.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme26e.f 𝐹 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
9 cdleme26e.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑆 𝑧 ) 𝑊 ) ) )
10 cdleme26e.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑇 𝑧 ) 𝑊 ) ) )
11 cdleme26e.i 𝐼 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
12 cdleme26e.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
13 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
14 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) → 𝑊𝐻 )
15 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
16 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
17 simp3l1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) → 𝑃𝑄 )
18 2 3 5 6 cdlemb2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) )
19 13 14 15 16 17 18 syl221anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) → ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) )
20 nfv 𝑧 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) )
21 nfra1 𝑧𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 )
22 nfcv 𝑧 𝐵
23 21 22 nfriota 𝑧 ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
24 11 23 nfcxfr 𝑧 𝐼
25 nfcv 𝑧
26 nfra1 𝑧𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 )
27 26 22 nfriota 𝑧 ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
28 12 27 nfcxfr 𝑧 𝐸
29 nfcv 𝑧
30 nfcv 𝑧 𝑉
31 28 29 30 nfov 𝑧 ( 𝐸 𝑉 )
32 24 25 31 nfbr 𝑧 𝐼 ( 𝐸 𝑉 )
33 simp111 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
34 simp112 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
35 simp113 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
36 simp121 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
37 simp122 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) )
38 simp123 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → ( 𝑉𝐴𝑉 𝑊 ) )
39 simp13l ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) )
40 simp13r ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) )
41 simp3r ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → ¬ 𝑧 ( 𝑃 𝑄 ) )
42 40 41 jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) )
43 simp2 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → 𝑧𝐴 )
44 simp3l ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → ¬ 𝑧 𝑊 )
45 43 44 jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) )
46 1 2 3 4 5 6 7 8 9 10 11 12 cdleme26e ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ∧ ( 𝑧𝐴 ∧ ¬ 𝑧 𝑊 ) ) ) → 𝐼 ( 𝐸 𝑉 ) )
47 33 34 35 36 37 38 39 42 45 46 syl333anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) ∧ 𝑧𝐴 ∧ ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) ) → 𝐼 ( 𝐸 𝑉 ) )
48 47 3exp ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) → ( 𝑧𝐴 → ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝐼 ( 𝐸 𝑉 ) ) ) )
49 20 32 48 rexlimd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) → ( ∃ 𝑧𝐴 ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝐼 ( 𝐸 𝑉 ) ) )
50 19 49 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ∧ ( ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ∧ 𝑇 ( 𝑃 𝑄 ) ) ∧ ( 𝑇 𝑉 ) = ( 𝑃 𝑄 ) ) ) → 𝐼 ( 𝐸 𝑉 ) )