Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme26.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleme26.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdleme26.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdleme26.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdleme26.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdleme26.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdleme26f2.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdleme26f2.f |
⊢ 𝐺 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme26f2.n |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐺 ∨ ( ( 𝑇 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme26f2.e |
⊢ 𝐸 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) |
11 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) |
13 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) |
14 |
|
simp12r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) |
15 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → 𝑃 ≠ 𝑄 ) |
16 |
13 14 15
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑄 ) ) |
17 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
18 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
19 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) |
20 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ) |
21 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
22 |
2 3 4 5 6 7 8 9
|
cdleme22f2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≠ 𝑄 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → 𝐺 ≤ ( 𝑂 ∨ 𝑉 ) ) |
23 |
11 12 16 17 18 19 20 21 22
|
syl323anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → 𝐺 ≤ ( 𝑂 ∨ 𝑉 ) ) |
24 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → 𝑇 ∈ 𝐴 ) |
25 |
|
simp23r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → ¬ 𝑇 ≤ 𝑊 ) |
26 |
1 2 3 4 5 6 7 8 9 10
|
cdleme25cl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐸 ∈ 𝐵 ) |
27 |
11 17 18 24 25 15 14 26
|
syl322anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → 𝐸 ∈ 𝐵 ) |
28 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → 𝑠 ∈ 𝐴 ) |
29 |
|
simp13r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → ¬ 𝑠 ≤ 𝑊 ) |
30 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
31 |
30 10
|
riotasv |
⊢ ( ( 𝐸 ∈ 𝐵 ∧ 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐸 = 𝑂 ) |
32 |
27 28 29 13 31
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → 𝐸 = 𝑂 ) |
33 |
32
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → ( 𝐸 ∨ 𝑉 ) = ( 𝑂 ∨ 𝑉 ) ) |
34 |
23 33
|
breqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ( ¬ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑠 ≠ 𝑇 ∧ 𝑠 ≤ ( 𝑇 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → 𝐺 ≤ ( 𝐸 ∨ 𝑉 ) ) |