Metamath Proof Explorer


Theorem cdleme27b

Description: Lemma for cdleme27N . (Contributed by NM, 3-Feb-2013)

Ref Expression
Hypotheses cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
cdleme26.l = ( le ‘ 𝐾 )
cdleme26.j = ( join ‘ 𝐾 )
cdleme26.m = ( meet ‘ 𝐾 )
cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme27.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme27.f 𝐹 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme27.z 𝑍 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
cdleme27.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑠 𝑧 ) 𝑊 ) ) )
cdleme27.d 𝐷 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
cdleme27.c 𝐶 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐷 , 𝐹 )
cdleme27.g 𝐺 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme27.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑡 𝑧 ) 𝑊 ) ) )
cdleme27.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
cdleme27.y 𝑌 = if ( 𝑡 ( 𝑃 𝑄 ) , 𝐸 , 𝐺 )
Assertion cdleme27b ( 𝑠 = 𝑡𝐶 = 𝑌 )

Proof

Step Hyp Ref Expression
1 cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme26.l = ( le ‘ 𝐾 )
3 cdleme26.j = ( join ‘ 𝐾 )
4 cdleme26.m = ( meet ‘ 𝐾 )
5 cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme27.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme27.f 𝐹 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme27.z 𝑍 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
10 cdleme27.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑠 𝑧 ) 𝑊 ) ) )
11 cdleme27.d 𝐷 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
12 cdleme27.c 𝐶 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐷 , 𝐹 )
13 cdleme27.g 𝐺 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
14 cdleme27.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑡 𝑧 ) 𝑊 ) ) )
15 cdleme27.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
16 cdleme27.y 𝑌 = if ( 𝑡 ( 𝑃 𝑄 ) , 𝐸 , 𝐺 )
17 breq1 ( 𝑠 = 𝑡 → ( 𝑠 ( 𝑃 𝑄 ) ↔ 𝑡 ( 𝑃 𝑄 ) ) )
18 oveq1 ( 𝑠 = 𝑡 → ( 𝑠 𝑧 ) = ( 𝑡 𝑧 ) )
19 18 oveq1d ( 𝑠 = 𝑡 → ( ( 𝑠 𝑧 ) 𝑊 ) = ( ( 𝑡 𝑧 ) 𝑊 ) )
20 19 oveq2d ( 𝑠 = 𝑡 → ( 𝑍 ( ( 𝑠 𝑧 ) 𝑊 ) ) = ( 𝑍 ( ( 𝑡 𝑧 ) 𝑊 ) ) )
21 20 oveq2d ( 𝑠 = 𝑡 → ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑠 𝑧 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑡 𝑧 ) 𝑊 ) ) ) )
22 21 10 14 3eqtr4g ( 𝑠 = 𝑡𝑁 = 𝑂 )
23 22 eqeq2d ( 𝑠 = 𝑡 → ( 𝑢 = 𝑁𝑢 = 𝑂 ) )
24 23 imbi2d ( 𝑠 = 𝑡 → ( ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) ) )
25 24 ralbidv ( 𝑠 = 𝑡 → ( ∀ 𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ∀ 𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) ) )
26 25 riotabidv ( 𝑠 = 𝑡 → ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) ) = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) ) )
27 26 11 15 3eqtr4g ( 𝑠 = 𝑡𝐷 = 𝐸 )
28 oveq1 ( 𝑠 = 𝑡 → ( 𝑠 𝑈 ) = ( 𝑡 𝑈 ) )
29 oveq2 ( 𝑠 = 𝑡 → ( 𝑃 𝑠 ) = ( 𝑃 𝑡 ) )
30 29 oveq1d ( 𝑠 = 𝑡 → ( ( 𝑃 𝑠 ) 𝑊 ) = ( ( 𝑃 𝑡 ) 𝑊 ) )
31 30 oveq2d ( 𝑠 = 𝑡 → ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) = ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
32 28 31 oveq12d ( 𝑠 = 𝑡 → ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) ) )
33 32 8 13 3eqtr4g ( 𝑠 = 𝑡𝐹 = 𝐺 )
34 17 27 33 ifbieq12d ( 𝑠 = 𝑡 → if ( 𝑠 ( 𝑃 𝑄 ) , 𝐷 , 𝐹 ) = if ( 𝑡 ( 𝑃 𝑄 ) , 𝐸 , 𝐺 ) )
35 34 12 16 3eqtr4g ( 𝑠 = 𝑡𝐶 = 𝑌 )