Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme26.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleme26.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdleme26.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdleme26.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdleme26.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdleme26.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdleme27.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdleme27.f |
⊢ 𝐹 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme27.z |
⊢ 𝑍 = ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme27.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑠 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
11 |
|
cdleme27.d |
⊢ 𝐷 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ) |
12 |
|
cdleme27.c |
⊢ 𝐶 = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐷 , 𝐹 ) |
13 |
|
cdleme27.g |
⊢ 𝐺 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
14 |
|
cdleme27.o |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
15 |
|
cdleme27.e |
⊢ 𝐸 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) |
16 |
|
cdleme27.y |
⊢ 𝑌 = if ( 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐸 , 𝐺 ) |
17 |
|
breq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
18 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ∨ 𝑧 ) = ( 𝑡 ∨ 𝑧 ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑠 ∨ 𝑧 ) ∧ 𝑊 ) = ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) |
20 |
19
|
oveq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑍 ∨ ( ( 𝑠 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑠 ∨ 𝑧 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) |
22 |
21 10 14
|
3eqtr4g |
⊢ ( 𝑠 = 𝑡 → 𝑁 = 𝑂 ) |
23 |
22
|
eqeq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑢 = 𝑁 ↔ 𝑢 = 𝑂 ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑠 = 𝑡 → ( ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) ) |
25 |
24
|
ralbidv |
⊢ ( 𝑠 = 𝑡 → ( ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) ) |
26 |
25
|
riotabidv |
⊢ ( 𝑠 = 𝑡 → ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ) = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) ) |
27 |
26 11 15
|
3eqtr4g |
⊢ ( 𝑠 = 𝑡 → 𝐷 = 𝐸 ) |
28 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ∨ 𝑈 ) = ( 𝑡 ∨ 𝑈 ) ) |
29 |
|
oveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝑃 ∨ 𝑠 ) = ( 𝑃 ∨ 𝑡 ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) = ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
32 |
28 31
|
oveq12d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) ) |
33 |
32 8 13
|
3eqtr4g |
⊢ ( 𝑠 = 𝑡 → 𝐹 = 𝐺 ) |
34 |
17 27 33
|
ifbieq12d |
⊢ ( 𝑠 = 𝑡 → if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐷 , 𝐹 ) = if ( 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐸 , 𝐺 ) ) |
35 |
34 12 16
|
3eqtr4g |
⊢ ( 𝑠 = 𝑡 → 𝐶 = 𝑌 ) |