| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme26.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme26.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme26.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme26.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme26.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme26.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme27.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme27.f | 
							⊢ 𝐹  =  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme27.z | 
							⊢ 𝑍  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdleme27.n | 
							⊢ 𝑁  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑠  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdleme27.d | 
							⊢ 𝐷  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							cdleme27.c | 
							⊢ 𝐶  =  if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  𝐷 ,  𝐹 )  | 
						
						
							| 13 | 
							
								
							 | 
							cdleme27.g | 
							⊢ 𝐺  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							cdleme27.o | 
							⊢ 𝑂  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							cdleme27.e | 
							⊢ 𝐸  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑂 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							cdleme27.y | 
							⊢ 𝑌  =  if ( 𝑡  ≤  ( 𝑃  ∨  𝑄 ) ,  𝐸 ,  𝐺 )  | 
						
						
							| 17 | 
							
								
							 | 
							simp11 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simp12 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 19 | 
							
								
							 | 
							simp2l | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  𝑠  ∈  𝐴 )  | 
						
						
							| 20 | 
							
								
							 | 
							simp3ll | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ¬  𝑠  ≤  𝑊 )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simp2r | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  𝑡  ∈  𝐴 )  | 
						
						
							| 23 | 
							
								
							 | 
							simp3rl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ¬  𝑡  ≤  𝑊 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp3lr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  | 
						
						
							| 26 | 
							
								
							 | 
							simp3rr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  | 
						
						
							| 27 | 
							
								
							 | 
							simp13 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  | 
						
						
							| 28 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
							 | 
							cdleme28c | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  =  ( 𝑌  ∨  ( 𝑋  ∧  𝑊 ) ) )  | 
						
						
							| 29 | 
							
								17 18 21 24 25 26 27 28
							 | 
							syl133anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  =  ( 𝑌  ∨  ( 𝑋  ∧  𝑊 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							3exp | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ( ( 𝑠  ∈  𝐴  ∧  𝑡  ∈  𝐴 )  →  ( ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  =  ( 𝑌  ∨  ( 𝑋  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ralrimivv | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ∀ 𝑠  ∈  𝐴 ∀ 𝑡  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  =  ( 𝑌  ∨  ( 𝑋  ∧  𝑊 ) ) ) )  |