Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme26.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleme26.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdleme26.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdleme26.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdleme26.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdleme26.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdleme27.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdleme27.f |
⊢ 𝐹 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme27.z |
⊢ 𝑍 = ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme27.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑠 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
11 |
|
cdleme27.d |
⊢ 𝐷 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ) |
12 |
|
cdleme27.c |
⊢ 𝐶 = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐷 , 𝐹 ) |
13 |
|
cdleme27.g |
⊢ 𝐺 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
14 |
|
cdleme27.o |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
15 |
|
cdleme27.e |
⊢ 𝐸 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) |
16 |
|
cdleme27.y |
⊢ 𝑌 = if ( 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐸 , 𝐺 ) |
17 |
|
simp11 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
18 |
|
simp12 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → 𝑃 ≠ 𝑄 ) |
19 |
|
simp2l |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → 𝑠 ∈ 𝐴 ) |
20 |
|
simp3ll |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ¬ 𝑠 ≤ 𝑊 ) |
21 |
19 20
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) |
22 |
|
simp2r |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → 𝑡 ∈ 𝐴 ) |
23 |
|
simp3rl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ¬ 𝑡 ≤ 𝑊 ) |
24 |
22 23
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) |
25 |
|
simp3lr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
26 |
|
simp3rr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
27 |
|
simp13 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
cdleme28c |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
29 |
17 18 21 24 25 26 27 28
|
syl133anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) ∧ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
30 |
29
|
3exp |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
31 |
30
|
ralrimivv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∀ 𝑠 ∈ 𝐴 ∀ 𝑡 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |