Metamath Proof Explorer


Theorem cdleme28a

Description: Lemma for cdleme25b . TODO: FIX COMMENT. (Contributed by NM, 4-Feb-2013)

Ref Expression
Hypotheses cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
cdleme26.l = ( le ‘ 𝐾 )
cdleme26.j = ( join ‘ 𝐾 )
cdleme26.m = ( meet ‘ 𝐾 )
cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme27.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme27.f 𝐹 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme27.z 𝑍 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
cdleme27.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑠 𝑧 ) 𝑊 ) ) )
cdleme27.d 𝐷 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
cdleme27.c 𝐶 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐷 , 𝐹 )
cdleme27.g 𝐺 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme27.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑡 𝑧 ) 𝑊 ) ) )
cdleme27.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
cdleme27.y 𝑌 = if ( 𝑡 ( 𝑃 𝑄 ) , 𝐸 , 𝐺 )
cdleme28a.v 𝑉 = ( ( 𝑠 𝑡 ) ( 𝑋 𝑊 ) )
Assertion cdleme28a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝐶 ( 𝑋 𝑊 ) ) ( 𝑌 ( 𝑋 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme26.l = ( le ‘ 𝐾 )
3 cdleme26.j = ( join ‘ 𝐾 )
4 cdleme26.m = ( meet ‘ 𝐾 )
5 cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme27.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme27.f 𝐹 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme27.z 𝑍 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
10 cdleme27.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑠 𝑧 ) 𝑊 ) ) )
11 cdleme27.d 𝐷 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
12 cdleme27.c 𝐶 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐷 , 𝐹 )
13 cdleme27.g 𝐺 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
14 cdleme27.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑡 𝑧 ) 𝑊 ) ) )
15 cdleme27.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
16 cdleme27.y 𝑌 = if ( 𝑡 ( 𝑃 𝑄 ) , 𝐸 , 𝐺 )
17 cdleme28a.v 𝑉 = ( ( 𝑠 𝑡 ) ( 𝑋 𝑊 ) )
18 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝐾 ∈ HL )
19 18 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝐾 ∈ Lat )
20 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑊𝐻 )
21 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
22 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
23 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) )
24 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑃𝑄 )
25 1 2 3 4 5 6 7 8 9 10 11 12 cdleme27cl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑃𝑄 ) ) → 𝐶𝐵 )
26 18 20 21 22 23 24 25 syl222anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝐶𝐵 )
27 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) )
28 1 2 3 4 5 6 7 13 9 14 15 16 cdleme27cl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ 𝑃𝑄 ) ) → 𝑌𝐵 )
29 18 20 21 22 27 24 28 syl222anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑌𝐵 )
30 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
31 30 23 27 3jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) )
32 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
33 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑠𝑡 )
34 simp32l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 )
35 simp32r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 )
36 33 34 35 3jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑠𝑡 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) )
37 1 2 3 4 5 6 17 cdleme23b ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑠𝑡 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑉𝐴 )
38 31 32 36 37 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑉𝐴 )
39 1 5 atbase ( 𝑉𝐴𝑉𝐵 )
40 38 39 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑉𝐵 )
41 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵𝑉𝐵 ) → ( 𝑌 𝑉 ) ∈ 𝐵 )
42 19 29 40 41 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑌 𝑉 ) ∈ 𝐵 )
43 simp33l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑋𝐵 )
44 1 6 lhpbase ( 𝑊𝐻𝑊𝐵 )
45 20 44 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑊𝐵 )
46 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
47 19 43 45 46 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
48 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → ( 𝑌 ( 𝑋 𝑊 ) ) ∈ 𝐵 )
49 19 29 47 48 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑌 ( 𝑋 𝑊 ) ) ∈ 𝐵 )
50 1 2 3 4 5 6 17 cdleme23c ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑠𝑡 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑠 ( 𝑡 𝑉 ) )
51 31 32 36 50 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑠 ( 𝑡 𝑉 ) )
52 33 51 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑠𝑡𝑠 ( 𝑡 𝑉 ) ) )
53 1 2 3 4 5 6 17 cdleme23a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑠𝑡 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑉 𝑊 )
54 31 32 36 53 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑉 𝑊 )
55 38 54 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑉𝐴𝑉 𝑊 ) )
56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 cdleme27a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( ( 𝑠𝑡𝑠 ( 𝑡 𝑉 ) ) ∧ ( 𝑉𝐴𝑉 𝑊 ) ) ) → 𝐶 ( 𝑌 𝑉 ) )
57 30 24 23 21 22 27 52 55 56 syl332anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝐶 ( 𝑌 𝑉 ) )
58 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑠𝐴 )
59 simp23l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑡𝐴 )
60 1 3 5 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑠𝐴𝑡𝐴 ) → ( 𝑠 𝑡 ) ∈ 𝐵 )
61 18 58 59 60 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑠 𝑡 ) ∈ 𝐵 )
62 1 2 4 latmle2 ( ( 𝐾 ∈ Lat ∧ ( 𝑠 𝑡 ) ∈ 𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → ( ( 𝑠 𝑡 ) ( 𝑋 𝑊 ) ) ( 𝑋 𝑊 ) )
63 19 61 47 62 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( ( 𝑠 𝑡 ) ( 𝑋 𝑊 ) ) ( 𝑋 𝑊 ) )
64 17 63 eqbrtrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑉 ( 𝑋 𝑊 ) )
65 1 2 3 latjlej2 ( ( 𝐾 ∈ Lat ∧ ( 𝑉𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵𝑌𝐵 ) ) → ( 𝑉 ( 𝑋 𝑊 ) → ( 𝑌 𝑉 ) ( 𝑌 ( 𝑋 𝑊 ) ) ) )
66 19 40 47 29 65 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑉 ( 𝑋 𝑊 ) → ( 𝑌 𝑉 ) ( 𝑌 ( 𝑋 𝑊 ) ) ) )
67 64 66 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑌 𝑉 ) ( 𝑌 ( 𝑋 𝑊 ) ) )
68 1 2 19 26 42 49 57 67 lattrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝐶 ( 𝑌 ( 𝑋 𝑊 ) ) )
69 1 2 3 latlej2 ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → ( 𝑋 𝑊 ) ( 𝑌 ( 𝑋 𝑊 ) ) )
70 19 29 47 69 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑋 𝑊 ) ( 𝑌 ( 𝑋 𝑊 ) ) )
71 1 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝐶𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 ( 𝑋 𝑊 ) ) ∈ 𝐵 ) ) → ( ( 𝐶 ( 𝑌 ( 𝑋 𝑊 ) ) ∧ ( 𝑋 𝑊 ) ( 𝑌 ( 𝑋 𝑊 ) ) ) ↔ ( 𝐶 ( 𝑋 𝑊 ) ) ( 𝑌 ( 𝑋 𝑊 ) ) ) )
72 19 26 47 49 71 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( ( 𝐶 ( 𝑌 ( 𝑋 𝑊 ) ) ∧ ( 𝑋 𝑊 ) ( 𝑌 ( 𝑋 𝑊 ) ) ) ↔ ( 𝐶 ( 𝑋 𝑊 ) ) ( 𝑌 ( 𝑋 𝑊 ) ) ) )
73 68 70 72 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝐶 ( 𝑋 𝑊 ) ) ( 𝑌 ( 𝑋 𝑊 ) ) )