Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme26.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleme26.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdleme26.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdleme26.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdleme26.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdleme26.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdleme27.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdleme27.f |
⊢ 𝐹 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme27.z |
⊢ 𝑍 = ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme27.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑠 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
11 |
|
cdleme27.d |
⊢ 𝐷 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ) |
12 |
|
cdleme27.c |
⊢ 𝐶 = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐷 , 𝐹 ) |
13 |
|
cdleme27.g |
⊢ 𝐺 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
14 |
|
cdleme27.o |
⊢ 𝑂 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
15 |
|
cdleme27.e |
⊢ 𝐸 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑂 ) ) |
16 |
|
cdleme27.y |
⊢ 𝑌 = if ( 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐸 , 𝐺 ) |
17 |
|
cdleme28a.v |
⊢ 𝑉 = ( ( 𝑠 ∨ 𝑡 ) ∧ ( 𝑋 ∧ 𝑊 ) ) |
18 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝐾 ∈ HL ) |
19 |
18
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝐾 ∈ Lat ) |
20 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐻 ) |
21 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
22 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
23 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) |
24 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑃 ≠ 𝑄 ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme27cl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ) → 𝐶 ∈ 𝐵 ) |
26 |
18 20 21 22 23 24 25
|
syl222anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝐶 ∈ 𝐵 ) |
27 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) |
28 |
1 2 3 4 5 6 7 13 9 14 15 16
|
cdleme27cl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ) → 𝑌 ∈ 𝐵 ) |
29 |
18 20 21 22 27 24 28
|
syl222anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑌 ∈ 𝐵 ) |
30 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
31 |
30 23 27
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ) |
32 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
33 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑠 ≠ 𝑡 ) |
34 |
|
simp32l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
35 |
|
simp32r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) |
36 |
33 34 35
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑠 ≠ 𝑡 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
37 |
1 2 3 4 5 6 17
|
cdleme23b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑉 ∈ 𝐴 ) |
38 |
31 32 36 37
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑉 ∈ 𝐴 ) |
39 |
1 5
|
atbase |
⊢ ( 𝑉 ∈ 𝐴 → 𝑉 ∈ 𝐵 ) |
40 |
38 39
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑉 ∈ 𝐵 ) |
41 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑉 ) ∈ 𝐵 ) |
42 |
19 29 40 41
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑌 ∨ 𝑉 ) ∈ 𝐵 ) |
43 |
|
simp33l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑋 ∈ 𝐵 ) |
44 |
1 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
45 |
20 44
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑊 ∈ 𝐵 ) |
46 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
47 |
19 43 45 46
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
48 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) → ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) |
49 |
19 29 47 48
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) |
50 |
1 2 3 4 5 6 17
|
cdleme23c |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑠 ≤ ( 𝑡 ∨ 𝑉 ) ) |
51 |
31 32 36 50
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑠 ≤ ( 𝑡 ∨ 𝑉 ) ) |
52 |
33 51
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑠 ≠ 𝑡 ∧ 𝑠 ≤ ( 𝑡 ∨ 𝑉 ) ) ) |
53 |
1 2 3 4 5 6 17
|
cdleme23a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → 𝑉 ≤ 𝑊 ) |
54 |
31 32 36 53
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑉 ≤ 𝑊 ) |
55 |
38 54
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
cdleme27a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( ( 𝑠 ≠ 𝑡 ∧ 𝑠 ≤ ( 𝑡 ∨ 𝑉 ) ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ) → 𝐶 ≤ ( 𝑌 ∨ 𝑉 ) ) |
57 |
30 24 23 21 22 27 52 55 56
|
syl332anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝐶 ≤ ( 𝑌 ∨ 𝑉 ) ) |
58 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑠 ∈ 𝐴 ) |
59 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑡 ∈ 𝐴 ) |
60 |
1 3 5
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) → ( 𝑠 ∨ 𝑡 ) ∈ 𝐵 ) |
61 |
18 58 59 60
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑠 ∨ 𝑡 ) ∈ 𝐵 ) |
62 |
1 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑠 ∨ 𝑡 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) → ( ( 𝑠 ∨ 𝑡 ) ∧ ( 𝑋 ∧ 𝑊 ) ) ≤ ( 𝑋 ∧ 𝑊 ) ) |
63 |
19 61 47 62
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( ( 𝑠 ∨ 𝑡 ) ∧ ( 𝑋 ∧ 𝑊 ) ) ≤ ( 𝑋 ∧ 𝑊 ) ) |
64 |
17 63
|
eqbrtrid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝑉 ≤ ( 𝑋 ∧ 𝑊 ) ) |
65 |
1 2 3
|
latjlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑉 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑉 ≤ ( 𝑋 ∧ 𝑊 ) → ( 𝑌 ∨ 𝑉 ) ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
66 |
19 40 47 29 65
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑉 ≤ ( 𝑋 ∧ 𝑊 ) → ( 𝑌 ∨ 𝑉 ) ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
67 |
64 66
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑌 ∨ 𝑉 ) ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
68 |
1 2 19 26 42 49 57 67
|
lattrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → 𝐶 ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
69 |
1 2 3
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
70 |
19 29 47 69
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑋 ∧ 𝑊 ) ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
71 |
1 2 3
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝐶 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ∧ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) ) → ( ( 𝐶 ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ∧ ( 𝑋 ∧ 𝑊 ) ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ↔ ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
72 |
19 26 47 49 71
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( ( 𝐶 ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ∧ ( 𝑋 ∧ 𝑊 ) ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ↔ ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
73 |
68 70 72
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ∧ ( 𝑠 ≠ 𝑡 ∧ ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ≤ ( 𝑌 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |