| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme26.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme26.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme26.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme26.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme26.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme26.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme27.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme27.f | 
							⊢ 𝐹  =  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme27.z | 
							⊢ 𝑍  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdleme27.n | 
							⊢ 𝑁  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑠  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdleme27.d | 
							⊢ 𝐷  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							cdleme27.c | 
							⊢ 𝐶  =  if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  𝐷 ,  𝐹 )  | 
						
						
							| 13 | 
							
								
							 | 
							cdleme27.g | 
							⊢ 𝐺  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							cdleme27.o | 
							⊢ 𝑂  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							cdleme27.e | 
							⊢ 𝐸  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑂 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							cdleme27.y | 
							⊢ 𝑌  =  if ( 𝑡  ≤  ( 𝑃  ∨  𝑄 ) ,  𝐸 ,  𝐺 )  | 
						
						
							| 17 | 
							
								
							 | 
							simp11l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 18 | 
							
								17
							 | 
							hllatd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 19 | 
							
								
							 | 
							simp11r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 20 | 
							
								
							 | 
							simp12 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simp13 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 24 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							cdleme27cl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 ) )  →  𝐶  ∈  𝐵 )  | 
						
						
							| 25 | 
							
								17 19 20 21 22 23 24
							 | 
							syl222anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  𝐶  ∈  𝐵 )  | 
						
						
							| 26 | 
							
								
							 | 
							simp33l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 27 | 
							
								1 6
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  𝐵 )  | 
						
						
							| 28 | 
							
								19 27
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  𝑊  ∈  𝐵 )  | 
						
						
							| 29 | 
							
								1 4
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  | 
						
						
							| 30 | 
							
								18 26 28 29
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  | 
						
						
							| 31 | 
							
								1 3
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝐶  ∈  𝐵  ∧  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  →  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  ∈  𝐵 )  | 
						
						
							| 32 | 
							
								18 25 30 31
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  ∈  𝐵 )  | 
						
						
							| 33 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  | 
						
						
							| 34 | 
							
								1 2 3 4 5 6 7 13 9 14 15 16
							 | 
							cdleme27cl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 ) )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 35 | 
							
								17 19 20 21 33 23 34
							 | 
							syl222anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 36 | 
							
								1 3
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑌  ∈  𝐵  ∧  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  →  ( 𝑌  ∨  ( 𝑋  ∧  𝑊 ) )  ∈  𝐵 )  | 
						
						
							| 37 | 
							
								18 35 30 36
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝑌  ∨  ( 𝑋  ∧  𝑊 ) )  ∈  𝐵 )  | 
						
						
							| 38 | 
							
								
							 | 
							eqid | 
							⊢ ( ( 𝑠  ∨  𝑡 )  ∧  ( 𝑋  ∧  𝑊 ) )  =  ( ( 𝑠  ∨  𝑡 )  ∧  ( 𝑋  ∧  𝑊 ) )  | 
						
						
							| 39 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 38
							 | 
							cdleme28a | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  ≤  ( 𝑌  ∨  ( 𝑋  ∧  𝑊 ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							simp11 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simp31 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  𝑠  ≠  𝑡 )  | 
						
						
							| 42 | 
							
								41
							 | 
							necomd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  𝑡  ≠  𝑠 )  | 
						
						
							| 43 | 
							
								
							 | 
							simp32 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ancomd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  | 
						
						
							| 45 | 
							
								
							 | 
							simp33 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							eqid | 
							⊢ ( ( 𝑡  ∨  𝑠 )  ∧  ( 𝑋  ∧  𝑊 ) )  =  ( ( 𝑡  ∨  𝑠 )  ∧  ( 𝑋  ∧  𝑊 ) )  | 
						
						
							| 47 | 
							
								1 2 3 4 5 6 7 13 9 14 15 16 8 10 11 12 46
							 | 
							cdleme28a | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 )  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 ) )  ∧  ( 𝑡  ≠  𝑠  ∧  ( ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝑌  ∨  ( 𝑋  ∧  𝑊 ) )  ≤  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) ) )  | 
						
						
							| 48 | 
							
								40 20 21 23 33 22 42 44 45 47
							 | 
							syl333anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝑌  ∨  ( 𝑋  ∧  𝑊 ) )  ≤  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) ) )  | 
						
						
							| 49 | 
							
								1 2 18 32 37 39 48
							 | 
							latasymd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑠  ≠  𝑡  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) ) )  →  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  =  ( 𝑌  ∨  ( 𝑋  ∧  𝑊 ) ) )  |