Metamath Proof Explorer


Theorem cdleme28b

Description: Lemma for cdleme25b . TODO: FIX COMMENT. (Contributed by NM, 6-Feb-2013)

Ref Expression
Hypotheses cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
cdleme26.l = ( le ‘ 𝐾 )
cdleme26.j = ( join ‘ 𝐾 )
cdleme26.m = ( meet ‘ 𝐾 )
cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme27.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme27.f 𝐹 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme27.z 𝑍 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
cdleme27.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑠 𝑧 ) 𝑊 ) ) )
cdleme27.d 𝐷 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
cdleme27.c 𝐶 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐷 , 𝐹 )
cdleme27.g 𝐺 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme27.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑡 𝑧 ) 𝑊 ) ) )
cdleme27.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
cdleme27.y 𝑌 = if ( 𝑡 ( 𝑃 𝑄 ) , 𝐸 , 𝐺 )
Assertion cdleme28b ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝐶 ( 𝑋 𝑊 ) ) = ( 𝑌 ( 𝑋 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 cdleme26.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme26.l = ( le ‘ 𝐾 )
3 cdleme26.j = ( join ‘ 𝐾 )
4 cdleme26.m = ( meet ‘ 𝐾 )
5 cdleme26.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme26.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme27.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme27.f 𝐹 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme27.z 𝑍 = ( ( 𝑧 𝑈 ) ( 𝑄 ( ( 𝑃 𝑧 ) 𝑊 ) ) )
10 cdleme27.n 𝑁 = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑠 𝑧 ) 𝑊 ) ) )
11 cdleme27.d 𝐷 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑁 ) )
12 cdleme27.c 𝐶 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐷 , 𝐹 )
13 cdleme27.g 𝐺 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
14 cdleme27.o 𝑂 = ( ( 𝑃 𝑄 ) ( 𝑍 ( ( 𝑡 𝑧 ) 𝑊 ) ) )
15 cdleme27.e 𝐸 = ( 𝑢𝐵𝑧𝐴 ( ( ¬ 𝑧 𝑊 ∧ ¬ 𝑧 ( 𝑃 𝑄 ) ) → 𝑢 = 𝑂 ) )
16 cdleme27.y 𝑌 = if ( 𝑡 ( 𝑃 𝑄 ) , 𝐸 , 𝐺 )
17 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝐾 ∈ HL )
18 17 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝐾 ∈ Lat )
19 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑊𝐻 )
20 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
21 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
22 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) )
23 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑃𝑄 )
24 1 2 3 4 5 6 7 8 9 10 11 12 cdleme27cl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ 𝑃𝑄 ) ) → 𝐶𝐵 )
25 17 19 20 21 22 23 24 syl222anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝐶𝐵 )
26 simp33l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑋𝐵 )
27 1 6 lhpbase ( 𝑊𝐻𝑊𝐵 )
28 19 27 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑊𝐵 )
29 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
30 18 26 28 29 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
31 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝐶𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → ( 𝐶 ( 𝑋 𝑊 ) ) ∈ 𝐵 )
32 18 25 30 31 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝐶 ( 𝑋 𝑊 ) ) ∈ 𝐵 )
33 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) )
34 1 2 3 4 5 6 7 13 9 14 15 16 cdleme27cl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ 𝑃𝑄 ) ) → 𝑌𝐵 )
35 17 19 20 21 33 23 34 syl222anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑌𝐵 )
36 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → ( 𝑌 ( 𝑋 𝑊 ) ) ∈ 𝐵 )
37 18 35 30 36 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑌 ( 𝑋 𝑊 ) ) ∈ 𝐵 )
38 eqid ( ( 𝑠 𝑡 ) ( 𝑋 𝑊 ) ) = ( ( 𝑠 𝑡 ) ( 𝑋 𝑊 ) )
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 38 cdleme28a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝐶 ( 𝑋 𝑊 ) ) ( 𝑌 ( 𝑋 𝑊 ) ) )
40 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
41 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑠𝑡 )
42 41 necomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → 𝑡𝑠 )
43 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) )
44 43 ancomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) )
45 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
46 eqid ( ( 𝑡 𝑠 ) ( 𝑋 𝑊 ) ) = ( ( 𝑡 𝑠 ) ( 𝑋 𝑊 ) )
47 1 2 3 4 5 6 7 13 9 14 15 16 8 10 11 12 46 cdleme28a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) ∧ ( 𝑡𝑠 ∧ ( ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑌 ( 𝑋 𝑊 ) ) ( 𝐶 ( 𝑋 𝑊 ) ) )
48 40 20 21 23 33 22 42 44 45 47 syl333anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝑌 ( 𝑋 𝑊 ) ) ( 𝐶 ( 𝑋 𝑊 ) ) )
49 1 2 18 32 37 39 48 latasymd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑠𝑡 ∧ ( ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ∧ ( 𝑡 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ) → ( 𝐶 ( 𝑋 𝑊 ) ) = ( 𝑌 ( 𝑋 𝑊 ) ) )