Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme26.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleme26.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdleme26.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdleme26.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdleme26.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdleme26.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdleme27.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdleme27.f |
⊢ 𝐹 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme27.z |
⊢ 𝑍 = ( ( 𝑧 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme27.n |
⊢ 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑠 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
11 |
|
cdleme27.d |
⊢ 𝐷 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ) |
12 |
|
cdleme27.c |
⊢ 𝐶 = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐷 , 𝐹 ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme29ex |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∃ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) ) |
14 |
|
eqid |
⊢ ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
15 |
|
eqid |
⊢ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
16 |
|
eqid |
⊢ ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) |
17 |
|
eqid |
⊢ if ( 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) , ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) , ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) ) = if ( 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) , ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) , ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17
|
cdleme28 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∀ 𝑠 ∈ 𝐴 ∀ 𝑡 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( if ( 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) , ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) , ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) ) ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
19 |
|
breq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ≤ 𝑊 ↔ 𝑡 ≤ 𝑊 ) ) |
20 |
19
|
notbid |
⊢ ( 𝑠 = 𝑡 → ( ¬ 𝑠 ≤ 𝑊 ↔ ¬ 𝑡 ≤ 𝑊 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ↔ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑠 = 𝑡 → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ↔ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) |
24 |
12
|
oveq1i |
⊢ ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐷 , 𝐹 ) ∨ ( 𝑋 ∧ 𝑊 ) ) |
25 |
|
breq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
26 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ∨ 𝑧 ) = ( 𝑡 ∨ 𝑧 ) ) |
27 |
26
|
oveq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑠 ∨ 𝑧 ) ∧ 𝑊 ) = ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑍 ∨ ( ( 𝑠 ∨ 𝑧 ) ∧ 𝑊 ) ) = ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑠 ∨ 𝑧 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) |
30 |
10 29
|
syl5eq |
⊢ ( 𝑠 = 𝑡 → 𝑁 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) |
31 |
30
|
eqeq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑢 = 𝑁 ↔ 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) |
32 |
31
|
imbi2d |
⊢ ( 𝑠 = 𝑡 → ( ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) ) |
33 |
32
|
ralbidv |
⊢ ( 𝑠 = 𝑡 → ( ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ↔ ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) ) |
34 |
33
|
riotabidv |
⊢ ( 𝑠 = 𝑡 → ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = 𝑁 ) ) = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) ) |
35 |
11 34
|
syl5eq |
⊢ ( 𝑠 = 𝑡 → 𝐷 = ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) ) |
36 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ∨ 𝑈 ) = ( 𝑡 ∨ 𝑈 ) ) |
37 |
|
oveq2 |
⊢ ( 𝑠 = 𝑡 → ( 𝑃 ∨ 𝑠 ) = ( 𝑃 ∨ 𝑡 ) ) |
38 |
37
|
oveq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) |
39 |
38
|
oveq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) = ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
40 |
36 39
|
oveq12d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) ) |
41 |
8 40
|
syl5eq |
⊢ ( 𝑠 = 𝑡 → 𝐹 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) ) |
42 |
25 35 41
|
ifbieq12d |
⊢ ( 𝑠 = 𝑡 → if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐷 , 𝐹 ) = if ( 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) , ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) , ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) ) ) |
43 |
42
|
oveq1d |
⊢ ( 𝑠 = 𝑡 → ( if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐷 , 𝐹 ) ∨ ( 𝑋 ∧ 𝑊 ) ) = ( if ( 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) , ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) , ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) ) ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
44 |
24 43
|
syl5eq |
⊢ ( 𝑠 = 𝑡 → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( if ( 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) , ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) , ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) ) ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
45 |
23 44
|
reusv3 |
⊢ ( ∃ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) → ( ∀ 𝑠 ∈ 𝐴 ∀ 𝑡 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( if ( 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) , ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) , ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) ) ∨ ( 𝑋 ∧ 𝑊 ) ) ) ↔ ∃ 𝑣 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑣 = ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
46 |
45
|
biimpd |
⊢ ( ∃ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) → ( ∀ 𝑠 ∈ 𝐴 ∀ 𝑡 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( ¬ 𝑡 ≤ 𝑊 ∧ ( 𝑡 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) = ( if ( 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) , ( ℩ 𝑢 ∈ 𝐵 ∀ 𝑧 ∈ 𝐴 ( ( ¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑢 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑍 ∨ ( ( 𝑡 ∨ 𝑧 ) ∧ 𝑊 ) ) ) ) ) , ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) ) ∨ ( 𝑋 ∧ 𝑊 ) ) ) → ∃ 𝑣 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑣 = ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
47 |
13 18 46
|
sylc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∃ 𝑣 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑣 = ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |