| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdleme26.b | ⊢ 𝐵  =  ( Base ‘ 𝐾 ) | 
						
							| 2 |  | cdleme26.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 3 |  | cdleme26.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 4 |  | cdleme26.m | ⊢  ∧   =  ( meet ‘ 𝐾 ) | 
						
							| 5 |  | cdleme26.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 6 |  | cdleme26.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 7 |  | cdleme27.u | ⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) | 
						
							| 8 |  | cdleme27.f | ⊢ 𝐹  =  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) ) | 
						
							| 9 |  | cdleme27.z | ⊢ 𝑍  =  ( ( 𝑧  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑧 )  ∧  𝑊 ) ) ) | 
						
							| 10 |  | cdleme27.n | ⊢ 𝑁  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑠  ∨  𝑧 )  ∧  𝑊 ) ) ) | 
						
							| 11 |  | cdleme27.d | ⊢ 𝐷  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 ) ) | 
						
							| 12 |  | cdleme27.c | ⊢ 𝐶  =  if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  𝐷 ,  𝐹 ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | cdleme29ex | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ∃ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  ∈  𝐵 ) ) | 
						
							| 14 |  | eqid | ⊢ ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) )  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) )  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) | 
						
							| 17 |  | eqid | ⊢ if ( 𝑡  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) ,  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) )  =  if ( 𝑡  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) ,  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 | cdleme28 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ∀ 𝑠  ∈  𝐴 ∀ 𝑡  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  =  ( if ( 𝑡  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) ,  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) )  ∨  ( 𝑋  ∧  𝑊 ) ) ) ) | 
						
							| 19 |  | breq1 | ⊢ ( 𝑠  =  𝑡  →  ( 𝑠  ≤  𝑊  ↔  𝑡  ≤  𝑊 ) ) | 
						
							| 20 | 19 | notbid | ⊢ ( 𝑠  =  𝑡  →  ( ¬  𝑠  ≤  𝑊  ↔  ¬  𝑡  ≤  𝑊 ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑠  =  𝑡  →  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ↔  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) | 
						
							| 23 | 20 22 | anbi12d | ⊢ ( 𝑠  =  𝑡  →  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ↔  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) ) | 
						
							| 24 | 12 | oveq1i | ⊢ ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  =  ( if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  𝐷 ,  𝐹 )  ∨  ( 𝑋  ∧  𝑊 ) ) | 
						
							| 25 |  | breq1 | ⊢ ( 𝑠  =  𝑡  →  ( 𝑠  ≤  ( 𝑃  ∨  𝑄 )  ↔  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 26 |  | oveq1 | ⊢ ( 𝑠  =  𝑡  →  ( 𝑠  ∨  𝑧 )  =  ( 𝑡  ∨  𝑧 ) ) | 
						
							| 27 | 26 | oveq1d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑠  ∨  𝑧 )  ∧  𝑊 )  =  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) | 
						
							| 28 | 27 | oveq2d | ⊢ ( 𝑠  =  𝑡  →  ( 𝑍  ∨  ( ( 𝑠  ∨  𝑧 )  ∧  𝑊 ) )  =  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑠  ∨  𝑧 )  ∧  𝑊 ) ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) | 
						
							| 30 | 10 29 | eqtrid | ⊢ ( 𝑠  =  𝑡  →  𝑁  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) | 
						
							| 31 | 30 | eqeq2d | ⊢ ( 𝑠  =  𝑡  →  ( 𝑢  =  𝑁  ↔  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) | 
						
							| 32 | 31 | imbi2d | ⊢ ( 𝑠  =  𝑡  →  ( ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 )  ↔  ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) ) | 
						
							| 33 | 32 | ralbidv | ⊢ ( 𝑠  =  𝑡  →  ( ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 )  ↔  ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) ) | 
						
							| 34 | 33 | riotabidv | ⊢ ( 𝑠  =  𝑡  →  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  𝑁 ) )  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) ) | 
						
							| 35 | 11 34 | eqtrid | ⊢ ( 𝑠  =  𝑡  →  𝐷  =  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) ) | 
						
							| 36 |  | oveq1 | ⊢ ( 𝑠  =  𝑡  →  ( 𝑠  ∨  𝑈 )  =  ( 𝑡  ∨  𝑈 ) ) | 
						
							| 37 |  | oveq2 | ⊢ ( 𝑠  =  𝑡  →  ( 𝑃  ∨  𝑠 )  =  ( 𝑃  ∨  𝑡 ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 )  =  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( 𝑠  =  𝑡  →  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) )  =  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) | 
						
							| 40 | 36 39 | oveq12d | ⊢ ( 𝑠  =  𝑡  →  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) ) | 
						
							| 41 | 8 40 | eqtrid | ⊢ ( 𝑠  =  𝑡  →  𝐹  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) ) | 
						
							| 42 | 25 35 41 | ifbieq12d | ⊢ ( 𝑠  =  𝑡  →  if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  𝐷 ,  𝐹 )  =  if ( 𝑡  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) ,  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) ) ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( 𝑠  =  𝑡  →  ( if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  𝐷 ,  𝐹 )  ∨  ( 𝑋  ∧  𝑊 ) )  =  ( if ( 𝑡  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) ,  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) )  ∨  ( 𝑋  ∧  𝑊 ) ) ) | 
						
							| 44 | 24 43 | eqtrid | ⊢ ( 𝑠  =  𝑡  →  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  =  ( if ( 𝑡  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) ,  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) )  ∨  ( 𝑋  ∧  𝑊 ) ) ) | 
						
							| 45 | 23 44 | reusv3 | ⊢ ( ∃ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  ∈  𝐵 )  →  ( ∀ 𝑠  ∈  𝐴 ∀ 𝑡  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  =  ( if ( 𝑡  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) ,  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) )  ∨  ( 𝑋  ∧  𝑊 ) ) )  ↔  ∃ 𝑣  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  →  𝑣  =  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) ) ) ) ) | 
						
							| 46 | 45 | biimpd | ⊢ ( ∃ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  ∈  𝐵 )  →  ( ∀ 𝑠  ∈  𝐴 ∀ 𝑡  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ( 𝑡  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  →  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) )  =  ( if ( 𝑡  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑢  ∈  𝐵 ∀ 𝑧  ∈  𝐴 ( ( ¬  𝑧  ≤  𝑊  ∧  ¬  𝑧  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑢  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑍  ∨  ( ( 𝑡  ∨  𝑧 )  ∧  𝑊 ) ) ) ) ) ,  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) ) )  ∨  ( 𝑋  ∧  𝑊 ) ) )  →  ∃ 𝑣  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  →  𝑣  =  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) ) ) ) ) | 
						
							| 47 | 13 18 46 | sylc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ∃ 𝑣  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  →  𝑣  =  ( 𝐶  ∨  ( 𝑋  ∧  𝑊 ) ) ) ) |