Metamath Proof Explorer


Theorem cdleme3

Description: Part of proof of Lemma E in Crawley p. 113. F represents f(r). W is the fiducial co-atom (hyperplane) w. Here and in cdleme3fa above, we show that f(r) e. W (4th line from bottom on p. 113), meaning it is an atom and not under w, which in our notation is expressed as F e. A /\ -. F .<_ W . Their proof provides no details of our lemmas cdleme3b through cdleme3 , so there may be a simpler proof that we have overlooked. (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme1.l = ( le ‘ 𝐾 )
cdleme1.j = ( join ‘ 𝐾 )
cdleme1.m = ( meet ‘ 𝐾 )
cdleme1.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme1.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme1.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme1.f 𝐹 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
Assertion cdleme3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝐹 𝑊 )

Proof

Step Hyp Ref Expression
1 cdleme1.l = ( le ‘ 𝐾 )
2 cdleme1.j = ( join ‘ 𝐾 )
3 cdleme1.m = ( meet ‘ 𝐾 )
4 cdleme1.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme1.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme1.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme1.f 𝐹 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
8 eqid ( ( 𝑃 𝑅 ) 𝑊 ) = ( ( 𝑃 𝑅 ) 𝑊 )
9 1 2 3 4 5 6 7 8 cdleme3g ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐹𝑈 )
10 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
11 10 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ Lat )
12 simp23l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅𝐴 )
13 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
14 13 4 atbase ( 𝑅𝐴𝑅 ∈ ( Base ‘ 𝐾 ) )
15 12 14 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) )
16 1 2 3 4 5 6 7 cdleme3fa ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐹𝐴 )
17 13 4 atbase ( 𝐹𝐴𝐹 ∈ ( Base ‘ 𝐾 ) )
18 16 17 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐹 ∈ ( Base ‘ 𝐾 ) )
19 13 1 2 latlej2 ( ( 𝐾 ∈ Lat ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ∧ 𝐹 ∈ ( Base ‘ 𝐾 ) ) → 𝐹 ( 𝑅 𝐹 ) )
20 11 15 18 19 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐹 ( 𝑅 𝐹 ) )
21 20 biantrurd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐹 𝑊 ↔ ( 𝐹 ( 𝑅 𝐹 ) ∧ 𝐹 𝑊 ) ) )
22 13 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝐹𝐴 ) → ( 𝑅 𝐹 ) ∈ ( Base ‘ 𝐾 ) )
23 10 12 16 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅 𝐹 ) ∈ ( Base ‘ 𝐾 ) )
24 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑊𝐻 )
25 13 5 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
26 24 25 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
27 13 1 3 latlem12 ( ( 𝐾 ∈ Lat ∧ ( 𝐹 ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑅 𝐹 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐹 ( 𝑅 𝐹 ) ∧ 𝐹 𝑊 ) ↔ 𝐹 ( ( 𝑅 𝐹 ) 𝑊 ) ) )
28 11 18 23 26 27 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝐹 ( 𝑅 𝐹 ) ∧ 𝐹 𝑊 ) ↔ 𝐹 ( ( 𝑅 𝐹 ) 𝑊 ) ) )
29 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
30 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑃𝐴 )
31 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑄𝐴 )
32 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
33 1 2 3 4 5 6 7 cdleme2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ) → ( ( 𝑅 𝐹 ) 𝑊 ) = 𝑈 )
34 29 30 31 32 33 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 𝐹 ) 𝑊 ) = 𝑈 )
35 34 breq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐹 ( ( 𝑅 𝐹 ) 𝑊 ) ↔ 𝐹 𝑈 ) )
36 28 35 bitrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ( 𝐹 ( 𝑅 𝐹 ) ∧ 𝐹 𝑊 ) ↔ 𝐹 𝑈 ) )
37 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
38 10 37 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ AtLat )
39 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
40 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑃𝑄 )
41 1 2 3 4 5 6 lhpat2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑃𝑄 ) ) → 𝑈𝐴 )
42 29 39 31 40 41 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝑈𝐴 )
43 1 4 atcmp ( ( 𝐾 ∈ AtLat ∧ 𝐹𝐴𝑈𝐴 ) → ( 𝐹 𝑈𝐹 = 𝑈 ) )
44 38 16 42 43 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐹 𝑈𝐹 = 𝑈 ) )
45 21 36 44 3bitrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝐹 𝑊𝐹 = 𝑈 ) )
46 45 necon3bbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ( ¬ 𝐹 𝑊𝐹𝑈 ) )
47 9 46 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → ¬ 𝐹 𝑊 )