| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme30.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme30.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme30.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme30.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme30.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme30.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 8 | 
							
								7
							 | 
							hllatd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 9 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝑠  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								1 5
							 | 
							atbase | 
							⊢ ( 𝑠  ∈  𝐴  →  𝑠  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝑠  ∈  𝐵 )  | 
						
						
							| 12 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 14 | 
							
								1 6
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  𝐵 )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝑊  ∈  𝐵 )  | 
						
						
							| 16 | 
							
								1 4
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑌  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( 𝑌  ∧  𝑊 )  ∈  𝐵 )  | 
						
						
							| 17 | 
							
								8 12 15 16
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑌  ∧  𝑊 )  ∈  𝐵 )  | 
						
						
							| 18 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 19 | 
							
								1 3
							 | 
							latjass | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑠  ∈  𝐵  ∧  ( 𝑌  ∧  𝑊 )  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) )  ∨  𝑋 )  =  ( 𝑠  ∨  ( ( 𝑌  ∧  𝑊 )  ∨  𝑋 ) ) )  | 
						
						
							| 20 | 
							
								8 11 17 18 19
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) )  ∨  𝑋 )  =  ( 𝑠  ∨  ( ( 𝑌  ∧  𝑊 )  ∨  𝑋 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simp3l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  | 
						
						
							| 22 | 
							
								
							 | 
							simp3r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝑋  ≤  𝑌 )  | 
						
						
							| 23 | 
							
								1 2 4
							 | 
							latmlem1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑊  ∈  𝐵 ) )  →  ( 𝑋  ≤  𝑌  →  ( 𝑋  ∧  𝑊 )  ≤  ( 𝑌  ∧  𝑊 ) ) )  | 
						
						
							| 24 | 
							
								8 18 12 15 23
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑋  ≤  𝑌  →  ( 𝑋  ∧  𝑊 )  ≤  ( 𝑌  ∧  𝑊 ) ) )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑋  ∧  𝑊 )  ≤  ( 𝑌  ∧  𝑊 ) )  | 
						
						
							| 26 | 
							
								1 4
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  | 
						
						
							| 27 | 
							
								8 18 15 26
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  | 
						
						
							| 28 | 
							
								1 2 3
							 | 
							latjlej2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝑋  ∧  𝑊 )  ∈  𝐵  ∧  ( 𝑌  ∧  𝑊 )  ∈  𝐵  ∧  𝑠  ∈  𝐵 ) )  →  ( ( 𝑋  ∧  𝑊 )  ≤  ( 𝑌  ∧  𝑊 )  →  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  ≤  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) ) ) )  | 
						
						
							| 29 | 
							
								8 27 17 11 28
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( ( 𝑋  ∧  𝑊 )  ≤  ( 𝑌  ∧  𝑊 )  →  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  ≤  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) ) ) )  | 
						
						
							| 30 | 
							
								25 29
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  ≤  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) ) )  | 
						
						
							| 31 | 
							
								21 30
							 | 
							eqbrtrrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝑋  ≤  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) ) )  | 
						
						
							| 32 | 
							
								1 3
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑠  ∈  𝐵  ∧  ( 𝑌  ∧  𝑊 )  ∈  𝐵 )  →  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) )  ∈  𝐵 )  | 
						
						
							| 33 | 
							
								8 11 17 32
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) )  ∈  𝐵 )  | 
						
						
							| 34 | 
							
								1 2 3
							 | 
							latleeqj2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) )  ∈  𝐵 )  →  ( 𝑋  ≤  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) )  ↔  ( ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) )  ∨  𝑋 )  =  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) ) ) )  | 
						
						
							| 35 | 
							
								8 18 33 34
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑋  ≤  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) )  ↔  ( ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) )  ∨  𝑋 )  =  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) ) ) )  | 
						
						
							| 36 | 
							
								31 35
							 | 
							mpbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) )  ∨  𝑋 )  =  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 38 | 
							
								1 2 3 4 6
							 | 
							lhpmod2i2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  ∧  𝑋  ≤  𝑌 )  →  ( ( 𝑌  ∧  𝑊 )  ∨  𝑋 )  =  ( 𝑌  ∧  ( 𝑊  ∨  𝑋 ) ) )  | 
						
						
							| 39 | 
							
								37 12 18 22 38
							 | 
							syl121anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( ( 𝑌  ∧  𝑊 )  ∨  𝑋 )  =  ( 𝑌  ∧  ( 𝑊  ∨  𝑋 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑠  ∨  ( ( 𝑌  ∧  𝑊 )  ∨  𝑋 ) )  =  ( 𝑠  ∨  ( 𝑌  ∧  ( 𝑊  ∨  𝑋 ) ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							eqid | 
							⊢ ( 1. ‘ 𝐾 )  =  ( 1. ‘ 𝐾 )  | 
						
						
							| 43 | 
							
								1 2 3 42 6
							 | 
							lhpj1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ( 𝑊  ∨  𝑋 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 44 | 
							
								37 41 43
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑊  ∨  𝑋 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑌  ∧  ( 𝑊  ∨  𝑋 ) )  =  ( 𝑌  ∧  ( 1. ‘ 𝐾 ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							hlol | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL )  | 
						
						
							| 47 | 
							
								7 46
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝐾  ∈  OL )  | 
						
						
							| 48 | 
							
								1 4 42
							 | 
							olm11 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑌  ∈  𝐵 )  →  ( 𝑌  ∧  ( 1. ‘ 𝐾 ) )  =  𝑌 )  | 
						
						
							| 49 | 
							
								47 12 48
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑌  ∧  ( 1. ‘ 𝐾 ) )  =  𝑌 )  | 
						
						
							| 50 | 
							
								45 49
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑌  ∧  ( 𝑊  ∨  𝑋 ) )  =  𝑌 )  | 
						
						
							| 51 | 
							
								50
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑠  ∨  ( 𝑌  ∧  ( 𝑊  ∨  𝑋 ) ) )  =  ( 𝑠  ∨  𝑌 ) )  | 
						
						
							| 52 | 
							
								1 2 3
							 | 
							latlej1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑠  ∈  𝐵  ∧  ( 𝑋  ∧  𝑊 )  ∈  𝐵 )  →  𝑠  ≤  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) ) )  | 
						
						
							| 53 | 
							
								8 11 27 52
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝑠  ≤  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) ) )  | 
						
						
							| 54 | 
							
								53 21
							 | 
							breqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝑠  ≤  𝑋 )  | 
						
						
							| 55 | 
							
								1 2 8 11 18 12 54 22
							 | 
							lattrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  𝑠  ≤  𝑌 )  | 
						
						
							| 56 | 
							
								1 2 3
							 | 
							latleeqj1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑠  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑠  ≤  𝑌  ↔  ( 𝑠  ∨  𝑌 )  =  𝑌 ) )  | 
						
						
							| 57 | 
							
								8 11 12 56
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑠  ≤  𝑌  ↔  ( 𝑠  ∨  𝑌 )  =  𝑌 ) )  | 
						
						
							| 58 | 
							
								55 57
							 | 
							mpbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑠  ∨  𝑌 )  =  𝑌 )  | 
						
						
							| 59 | 
							
								40 51 58
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑠  ∨  ( ( 𝑌  ∧  𝑊 )  ∨  𝑋 ) )  =  𝑌 )  | 
						
						
							| 60 | 
							
								20 36 59
							 | 
							3eqtr3d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 )  ∧  𝑌  ∈  𝐵 )  ∧  ( ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝑠  ∨  ( 𝑌  ∧  𝑊 ) )  =  𝑌 )  |