| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme31.o | 
							⊢ 𝑂  =  ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑥  ∧  𝑊 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme31.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑥  ≤  𝑊 ) ,  𝑂 ,  𝑥 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme31.c | 
							⊢ 𝐶  =  ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑋  ∧  𝑊 ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							riotaex | 
							⊢ ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑋  ∧  𝑊 ) ) ) )  ∈  V  | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqeltri | 
							⊢ 𝐶  ∈  V  | 
						
						
							| 6 | 
							
								
							 | 
							ifexg | 
							⊢ ( ( 𝐶  ∈  V  ∧  𝑋  ∈  𝐵 )  →  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) ,  𝐶 ,  𝑋 )  ∈  V )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							mpan | 
							⊢ ( 𝑋  ∈  𝐵  →  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) ,  𝐶 ,  𝑋 )  ∈  V )  | 
						
						
							| 8 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ≤  𝑊  ↔  𝑋  ≤  𝑊 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							notbid | 
							⊢ ( 𝑥  =  𝑋  →  ( ¬  𝑥  ≤  𝑊  ↔  ¬  𝑋  ≤  𝑊 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑥  ≤  𝑊 )  ↔  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑥  ∧  𝑊 )  =  ( 𝑋  ∧  𝑊 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq2d | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  𝑋  →  𝑥  =  𝑋 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥  ↔  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							anbi2d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  ↔  ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  | 
						
						
							| 16 | 
							
								11
							 | 
							oveq2d | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑁  ∨  ( 𝑥  ∧  𝑊 ) )  =  ( 𝑁  ∨  ( 𝑋  ∧  𝑊 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqeq2d | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑧  =  ( 𝑁  ∨  ( 𝑥  ∧  𝑊 ) )  ↔  𝑧  =  ( 𝑁  ∨  ( 𝑋  ∧  𝑊 ) ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							imbi12d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑥  ∧  𝑊 ) ) )  ↔  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑋  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							ralbidv | 
							⊢ ( 𝑥  =  𝑋  →  ( ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑥  ∧  𝑊 ) ) )  ↔  ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑋  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							riotabidv | 
							⊢ ( 𝑥  =  𝑋  →  ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑥  ∧  𝑊 ) ) ) )  =  ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑋  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 21 | 
							
								20 1 3
							 | 
							3eqtr4g | 
							⊢ ( 𝑥  =  𝑋  →  𝑂  =  𝐶 )  | 
						
						
							| 22 | 
							
								10 21 13
							 | 
							ifbieq12d | 
							⊢ ( 𝑥  =  𝑋  →  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑥  ≤  𝑊 ) ,  𝑂 ,  𝑥 )  =  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) ,  𝐶 ,  𝑋 ) )  | 
						
						
							| 23 | 
							
								22 2
							 | 
							fvmptg | 
							⊢ ( ( 𝑋  ∈  𝐵  ∧  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) ,  𝐶 ,  𝑋 )  ∈  V )  →  ( 𝐹 ‘ 𝑋 )  =  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) ,  𝐶 ,  𝑋 ) )  | 
						
						
							| 24 | 
							
								7 23
							 | 
							mpdan | 
							⊢ ( 𝑋  ∈  𝐵  →  ( 𝐹 ‘ 𝑋 )  =  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) ,  𝐶 ,  𝑋 ) )  |