Metamath Proof Explorer


Theorem cdleme31fv1

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 10-Feb-2013)

Ref Expression
Hypotheses cdleme31.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
cdleme31.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
cdleme31.c 𝐶 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) )
Assertion cdleme31fv1 ( ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 cdleme31.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
2 cdleme31.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
3 cdleme31.c 𝐶 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) )
4 1 2 3 cdleme31fv ( 𝑋𝐵 → ( 𝐹𝑋 ) = if ( ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) , 𝐶 , 𝑋 ) )
5 iftrue ( ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) → if ( ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) , 𝐶 , 𝑋 ) = 𝐶 )
6 4 5 sylan9eq ( ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) = 𝐶 )