Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31.o |
⊢ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
2 |
|
cdleme31.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) ) |
3 |
|
eqid |
⊢ ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
4 |
1 2 3
|
cdleme31fv1 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
5 |
1 3
|
cdleme31so |
⊢ ( 𝑋 ∈ 𝐵 → ⦋ 𝑋 / 𝑥 ⦌ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ⦋ 𝑋 / 𝑥 ⦌ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
7 |
4 6
|
eqtr4d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = ⦋ 𝑋 / 𝑥 ⦌ 𝑂 ) |