Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31fv2.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) ) |
2 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≤ 𝑊 ↔ 𝑋 ≤ 𝑊 ) ) |
3 |
2
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ 𝑥 ≤ 𝑊 ↔ ¬ 𝑋 ≤ 𝑊 ) ) |
4 |
3
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) ↔ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) |
5 |
4
|
notbid |
⊢ ( 𝑥 = 𝑋 → ( ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) ↔ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ) |
6 |
5
|
biimparc |
⊢ ( ( ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ∧ 𝑥 = 𝑋 ) → ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) ) |
7 |
6
|
adantll |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑋 ) → ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) ) |
8 |
7
|
iffalsed |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑋 ) → if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) = 𝑥 ) |
9 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
10 |
8 9
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ 𝑥 = 𝑋 ) → if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) = 𝑋 ) |
11 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → 𝑋 ∈ 𝐵 ) |
12 |
1 10 11 11
|
fvmptd2 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ¬ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑋 ) |