| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme31sc.c |
⊢ 𝐶 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
| 2 |
|
cdleme31sc.x |
⊢ 𝑋 = ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) ) |
| 3 |
|
nfcvd |
⊢ ( 𝑅 ∈ 𝐴 → Ⅎ 𝑠 ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) ) ) |
| 4 |
|
oveq1 |
⊢ ( 𝑠 = 𝑅 → ( 𝑠 ∨ 𝑈 ) = ( 𝑅 ∨ 𝑈 ) ) |
| 5 |
|
oveq2 |
⊢ ( 𝑠 = 𝑅 → ( 𝑃 ∨ 𝑠 ) = ( 𝑃 ∨ 𝑅 ) ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝑠 = 𝑅 → ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑠 = 𝑅 → ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) = ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) ) |
| 8 |
4 7
|
oveq12d |
⊢ ( 𝑠 = 𝑅 → ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) = ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) ) ) |
| 9 |
3 8
|
csbiegf |
⊢ ( 𝑅 ∈ 𝐴 → ⦋ 𝑅 / 𝑠 ⦌ ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) = ( ( 𝑅 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑅 ) ∧ 𝑊 ) ) ) ) |
| 10 |
1
|
csbeq2i |
⊢ ⦋ 𝑅 / 𝑠 ⦌ 𝐶 = ⦋ 𝑅 / 𝑠 ⦌ ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
| 11 |
9 10 2
|
3eqtr4g |
⊢ ( 𝑅 ∈ 𝐴 → ⦋ 𝑅 / 𝑠 ⦌ 𝐶 = 𝑋 ) |