| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme31se.e | 
							⊢ 𝐸  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑠  ∨  𝑇 )  ∧  𝑊 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme31se.y | 
							⊢ 𝑌  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑅  ∨  𝑇 )  ∧  𝑊 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nfcvd | 
							⊢ ( 𝑅  ∈  𝐴  →  Ⅎ 𝑠 ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑅  ∨  𝑇 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑠  =  𝑅  →  ( 𝑠  ∨  𝑇 )  =  ( 𝑅  ∨  𝑇 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							oveq1d | 
							⊢ ( 𝑠  =  𝑅  →  ( ( 𝑠  ∨  𝑇 )  ∧  𝑊 )  =  ( ( 𝑅  ∨  𝑇 )  ∧  𝑊 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq2d | 
							⊢ ( 𝑠  =  𝑅  →  ( 𝐷  ∨  ( ( 𝑠  ∨  𝑇 )  ∧  𝑊 ) )  =  ( 𝐷  ∨  ( ( 𝑅  ∨  𝑇 )  ∧  𝑊 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							oveq2d | 
							⊢ ( 𝑠  =  𝑅  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑠  ∨  𝑇 )  ∧  𝑊 ) ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑅  ∨  𝑇 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							csbiegf | 
							⊢ ( 𝑅  ∈  𝐴  →  ⦋ 𝑅  /  𝑠 ⦌ ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑠  ∨  𝑇 )  ∧  𝑊 ) ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑅  ∨  𝑇 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 9 | 
							
								1
							 | 
							csbeq2i | 
							⊢ ⦋ 𝑅  /  𝑠 ⦌ 𝐸  =  ⦋ 𝑅  /  𝑠 ⦌ ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑠  ∨  𝑇 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								8 9 2
							 | 
							3eqtr4g | 
							⊢ ( 𝑅  ∈  𝐴  →  ⦋ 𝑅  /  𝑠 ⦌ 𝐸  =  𝑌 )  |