Metamath Proof Explorer


Theorem cdleme31se2

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 3-Apr-2013)

Ref Expression
Hypotheses cdleme31se2.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
cdleme31se2.y 𝑌 = ( ( 𝑃 𝑄 ) ( 𝑆 / 𝑡 𝐷 ( ( 𝑅 𝑆 ) 𝑊 ) ) )
Assertion cdleme31se2 ( 𝑆𝐴 𝑆 / 𝑡 𝐸 = 𝑌 )

Proof

Step Hyp Ref Expression
1 cdleme31se2.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
2 cdleme31se2.y 𝑌 = ( ( 𝑃 𝑄 ) ( 𝑆 / 𝑡 𝐷 ( ( 𝑅 𝑆 ) 𝑊 ) ) )
3 nfcv 𝑡 ( 𝑃 𝑄 )
4 nfcv 𝑡
5 nfcsb1v 𝑡 𝑆 / 𝑡 𝐷
6 nfcv 𝑡
7 nfcv 𝑡 ( ( 𝑅 𝑆 ) 𝑊 )
8 5 6 7 nfov 𝑡 ( 𝑆 / 𝑡 𝐷 ( ( 𝑅 𝑆 ) 𝑊 ) )
9 3 4 8 nfov 𝑡 ( ( 𝑃 𝑄 ) ( 𝑆 / 𝑡 𝐷 ( ( 𝑅 𝑆 ) 𝑊 ) ) )
10 9 a1i ( 𝑆𝐴 𝑡 ( ( 𝑃 𝑄 ) ( 𝑆 / 𝑡 𝐷 ( ( 𝑅 𝑆 ) 𝑊 ) ) ) )
11 csbeq1a ( 𝑡 = 𝑆𝐷 = 𝑆 / 𝑡 𝐷 )
12 oveq2 ( 𝑡 = 𝑆 → ( 𝑅 𝑡 ) = ( 𝑅 𝑆 ) )
13 12 oveq1d ( 𝑡 = 𝑆 → ( ( 𝑅 𝑡 ) 𝑊 ) = ( ( 𝑅 𝑆 ) 𝑊 ) )
14 11 13 oveq12d ( 𝑡 = 𝑆 → ( 𝐷 ( ( 𝑅 𝑡 ) 𝑊 ) ) = ( 𝑆 / 𝑡 𝐷 ( ( 𝑅 𝑆 ) 𝑊 ) ) )
15 14 oveq2d ( 𝑡 = 𝑆 → ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑅 𝑡 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( 𝑆 / 𝑡 𝐷 ( ( 𝑅 𝑆 ) 𝑊 ) ) ) )
16 10 15 csbiegf ( 𝑆𝐴 𝑆 / 𝑡 ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑅 𝑡 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( 𝑆 / 𝑡 𝐷 ( ( 𝑅 𝑆 ) 𝑊 ) ) ) )
17 1 csbeq2i 𝑆 / 𝑡 𝐸 = 𝑆 / 𝑡 ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
18 16 17 2 3eqtr4g ( 𝑆𝐴 𝑆 / 𝑡 𝐸 = 𝑌 )