Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31se2.e |
⊢ 𝐸 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑅 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
2 |
|
cdleme31se2.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ⦋ 𝑆 / 𝑡 ⦌ 𝐷 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
3 |
|
nfcv |
⊢ Ⅎ 𝑡 ( 𝑃 ∨ 𝑄 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑡 ∧ |
5 |
|
nfcsb1v |
⊢ Ⅎ 𝑡 ⦋ 𝑆 / 𝑡 ⦌ 𝐷 |
6 |
|
nfcv |
⊢ Ⅎ 𝑡 ∨ |
7 |
|
nfcv |
⊢ Ⅎ 𝑡 ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) |
8 |
5 6 7
|
nfov |
⊢ Ⅎ 𝑡 ( ⦋ 𝑆 / 𝑡 ⦌ 𝐷 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) |
9 |
3 4 8
|
nfov |
⊢ Ⅎ 𝑡 ( ( 𝑃 ∨ 𝑄 ) ∧ ( ⦋ 𝑆 / 𝑡 ⦌ 𝐷 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
10 |
9
|
a1i |
⊢ ( 𝑆 ∈ 𝐴 → Ⅎ 𝑡 ( ( 𝑃 ∨ 𝑄 ) ∧ ( ⦋ 𝑆 / 𝑡 ⦌ 𝐷 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
11 |
|
csbeq1a |
⊢ ( 𝑡 = 𝑆 → 𝐷 = ⦋ 𝑆 / 𝑡 ⦌ 𝐷 ) |
12 |
|
oveq2 |
⊢ ( 𝑡 = 𝑆 → ( 𝑅 ∨ 𝑡 ) = ( 𝑅 ∨ 𝑆 ) ) |
13 |
12
|
oveq1d |
⊢ ( 𝑡 = 𝑆 → ( ( 𝑅 ∨ 𝑡 ) ∧ 𝑊 ) = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) |
14 |
11 13
|
oveq12d |
⊢ ( 𝑡 = 𝑆 → ( 𝐷 ∨ ( ( 𝑅 ∨ 𝑡 ) ∧ 𝑊 ) ) = ( ⦋ 𝑆 / 𝑡 ⦌ 𝐷 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑡 = 𝑆 → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑅 ∨ 𝑡 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ⦋ 𝑆 / 𝑡 ⦌ 𝐷 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
16 |
10 15
|
csbiegf |
⊢ ( 𝑆 ∈ 𝐴 → ⦋ 𝑆 / 𝑡 ⦌ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑅 ∨ 𝑡 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ⦋ 𝑆 / 𝑡 ⦌ 𝐷 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
17 |
1
|
csbeq2i |
⊢ ⦋ 𝑆 / 𝑡 ⦌ 𝐸 = ⦋ 𝑆 / 𝑡 ⦌ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑅 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
18 |
16 17 2
|
3eqtr4g |
⊢ ( 𝑆 ∈ 𝐴 → ⦋ 𝑆 / 𝑡 ⦌ 𝐸 = 𝑌 ) |