Metamath Proof Explorer


Theorem cdleme31sn

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 26-Feb-2013)

Ref Expression
Hypotheses cdleme31sn.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
cdleme31sn.c 𝐶 = if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 )
Assertion cdleme31sn ( 𝑅𝐴 𝑅 / 𝑠 𝑁 = 𝐶 )

Proof

Step Hyp Ref Expression
1 cdleme31sn.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
2 cdleme31sn.c 𝐶 = if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 )
3 nfv 𝑠 𝑅 ( 𝑃 𝑄 )
4 nfcsb1v 𝑠 𝑅 / 𝑠 𝐼
5 nfcsb1v 𝑠 𝑅 / 𝑠 𝐷
6 3 4 5 nfif 𝑠 if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 )
7 6 a1i ( 𝑅𝐴 𝑠 if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 ) )
8 breq1 ( 𝑠 = 𝑅 → ( 𝑠 ( 𝑃 𝑄 ) ↔ 𝑅 ( 𝑃 𝑄 ) ) )
9 csbeq1a ( 𝑠 = 𝑅𝐼 = 𝑅 / 𝑠 𝐼 )
10 csbeq1a ( 𝑠 = 𝑅𝐷 = 𝑅 / 𝑠 𝐷 )
11 8 9 10 ifbieq12d ( 𝑠 = 𝑅 → if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 ) = if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 ) )
12 7 11 csbiegf ( 𝑅𝐴 𝑅 / 𝑠 if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 ) = if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 ) )
13 1 csbeq2i 𝑅 / 𝑠 𝑁 = 𝑅 / 𝑠 if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
14 12 13 2 3eqtr4g ( 𝑅𝐴 𝑅 / 𝑠 𝑁 = 𝐶 )