Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31sn.n |
⊢ 𝑁 = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , 𝐷 ) |
2 |
|
cdleme31sn.c |
⊢ 𝐶 = if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) |
3 |
|
nfv |
⊢ Ⅎ 𝑠 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) |
4 |
|
nfcsb1v |
⊢ Ⅎ 𝑠 ⦋ 𝑅 / 𝑠 ⦌ 𝐼 |
5 |
|
nfcsb1v |
⊢ Ⅎ 𝑠 ⦋ 𝑅 / 𝑠 ⦌ 𝐷 |
6 |
3 4 5
|
nfif |
⊢ Ⅎ 𝑠 if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) |
7 |
6
|
a1i |
⊢ ( 𝑅 ∈ 𝐴 → Ⅎ 𝑠 if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) ) |
8 |
|
breq1 |
⊢ ( 𝑠 = 𝑅 → ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
9 |
|
csbeq1a |
⊢ ( 𝑠 = 𝑅 → 𝐼 = ⦋ 𝑅 / 𝑠 ⦌ 𝐼 ) |
10 |
|
csbeq1a |
⊢ ( 𝑠 = 𝑅 → 𝐷 = ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) |
11 |
8 9 10
|
ifbieq12d |
⊢ ( 𝑠 = 𝑅 → if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , 𝐷 ) = if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) ) |
12 |
7 11
|
csbiegf |
⊢ ( 𝑅 ∈ 𝐴 → ⦋ 𝑅 / 𝑠 ⦌ if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , 𝐷 ) = if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) ) |
13 |
1
|
csbeq2i |
⊢ ⦋ 𝑅 / 𝑠 ⦌ 𝑁 = ⦋ 𝑅 / 𝑠 ⦌ if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , 𝐷 ) |
14 |
12 13 2
|
3eqtr4g |
⊢ ( 𝑅 ∈ 𝐴 → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 = 𝐶 ) |