| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme31sn1.i | 
							⊢ 𝐼  =  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐺 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme31sn1.n | 
							⊢ 𝑁  =  if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  𝐼 ,  𝐷 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme31sn1.c | 
							⊢ 𝐶  =  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ if ( 𝑅  ≤  ( 𝑃  ∨  𝑄 ) ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐼 ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐷 )  =  if ( 𝑅  ≤  ( 𝑃  ∨  𝑄 ) ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐼 ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐷 )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							cdleme31sn | 
							⊢ ( 𝑅  ∈  𝐴  →  ⦋ 𝑅  /  𝑠 ⦌ 𝑁  =  if ( 𝑅  ≤  ( 𝑃  ∨  𝑄 ) ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐼 ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐷 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝑅  ∈  𝐴  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ⦋ 𝑅  /  𝑠 ⦌ 𝑁  =  if ( 𝑅  ≤  ( 𝑃  ∨  𝑄 ) ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐼 ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐷 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							iftrue | 
							⊢ ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  →  if ( 𝑅  ≤  ( 𝑃  ∨  𝑄 ) ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐼 ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐷 )  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐼 )  | 
						
						
							| 8 | 
							
								1
							 | 
							csbeq2i | 
							⊢ ⦋ 𝑅  /  𝑠 ⦌ 𝐼  =  ⦋ 𝑅  /  𝑠 ⦌ ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐺 ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtrdi | 
							⊢ ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  →  if ( 𝑅  ≤  ( 𝑃  ∨  𝑄 ) ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐼 ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐷 )  =  ⦋ 𝑅  /  𝑠 ⦌ ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐺 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑠 𝐴  | 
						
						
							| 11 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑠 ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							nfcsb1v | 
							⊢ Ⅎ 𝑠 ⦋ 𝑅  /  𝑠 ⦌ 𝐺  | 
						
						
							| 13 | 
							
								12
							 | 
							nfeq2 | 
							⊢ Ⅎ 𝑠 𝑦  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺  | 
						
						
							| 14 | 
							
								11 13
							 | 
							nfim | 
							⊢ Ⅎ 𝑠 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺 )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							nfralw | 
							⊢ Ⅎ 𝑠 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺 )  | 
						
						
							| 16 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑠 𝐵  | 
						
						
							| 17 | 
							
								15 16
							 | 
							nfriota | 
							⊢ Ⅎ 𝑠 ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							a1i | 
							⊢ ( 𝑅  ∈  𝐴  →  Ⅎ 𝑠 ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							csbeq1a | 
							⊢ ( 𝑠  =  𝑅  →  𝐺  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺 )  | 
						
						
							| 20 | 
							
								19
							 | 
							eqeq2d | 
							⊢ ( 𝑠  =  𝑅  →  ( 𝑦  =  𝐺  ↔  𝑦  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							imbi2d | 
							⊢ ( 𝑠  =  𝑅  →  ( ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐺 )  ↔  ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							ralbidv | 
							⊢ ( 𝑠  =  𝑅  →  ( ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐺 )  ↔  ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							riotabidv | 
							⊢ ( 𝑠  =  𝑅  →  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐺 ) )  =  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺 ) ) )  | 
						
						
							| 24 | 
							
								18 23
							 | 
							csbiegf | 
							⊢ ( 𝑅  ∈  𝐴  →  ⦋ 𝑅  /  𝑠 ⦌ ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐺 ) )  =  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺 ) ) )  | 
						
						
							| 25 | 
							
								9 24
							 | 
							sylan9eqr | 
							⊢ ( ( 𝑅  ∈  𝐴  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  if ( 𝑅  ≤  ( 𝑃  ∨  𝑄 ) ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐼 ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐷 )  =  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  ⦋ 𝑅  /  𝑠 ⦌ 𝐺 ) ) )  | 
						
						
							| 26 | 
							
								25 3
							 | 
							eqtr4di | 
							⊢ ( ( 𝑅  ∈  𝐴  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  if ( 𝑅  ≤  ( 𝑃  ∨  𝑄 ) ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐼 ,  ⦋ 𝑅  /  𝑠 ⦌ 𝐷 )  =  𝐶 )  | 
						
						
							| 27 | 
							
								6 26
							 | 
							eqtrd | 
							⊢ ( ( 𝑅  ∈  𝐴  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ⦋ 𝑅  /  𝑠 ⦌ 𝑁  =  𝐶 )  |