Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31sn1.i |
⊢ 𝐼 = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐺 ) ) |
2 |
|
cdleme31sn1.n |
⊢ 𝑁 = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , 𝐷 ) |
3 |
|
cdleme31sn1.c |
⊢ 𝐶 = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) |
4 |
|
eqid |
⊢ if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) = if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) |
5 |
2 4
|
cdleme31sn |
⊢ ( 𝑅 ∈ 𝐴 → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 = if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 = if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) ) |
7 |
|
iftrue |
⊢ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) → if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) = ⦋ 𝑅 / 𝑠 ⦌ 𝐼 ) |
8 |
1
|
csbeq2i |
⊢ ⦋ 𝑅 / 𝑠 ⦌ 𝐼 = ⦋ 𝑅 / 𝑠 ⦌ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐺 ) ) |
9 |
7 8
|
eqtrdi |
⊢ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) → if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) = ⦋ 𝑅 / 𝑠 ⦌ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐺 ) ) ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑠 𝐴 |
11 |
|
nfv |
⊢ Ⅎ 𝑠 ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) |
12 |
|
nfcsb1v |
⊢ Ⅎ 𝑠 ⦋ 𝑅 / 𝑠 ⦌ 𝐺 |
13 |
12
|
nfeq2 |
⊢ Ⅎ 𝑠 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 |
14 |
11 13
|
nfim |
⊢ Ⅎ 𝑠 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) |
15 |
10 14
|
nfralw |
⊢ Ⅎ 𝑠 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) |
16 |
|
nfcv |
⊢ Ⅎ 𝑠 𝐵 |
17 |
15 16
|
nfriota |
⊢ Ⅎ 𝑠 ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) |
18 |
17
|
a1i |
⊢ ( 𝑅 ∈ 𝐴 → Ⅎ 𝑠 ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) ) |
19 |
|
csbeq1a |
⊢ ( 𝑠 = 𝑅 → 𝐺 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑠 = 𝑅 → ( 𝑦 = 𝐺 ↔ 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑠 = 𝑅 → ( ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐺 ) ↔ ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) ) |
22 |
21
|
ralbidv |
⊢ ( 𝑠 = 𝑅 → ( ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐺 ) ↔ ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) ) |
23 |
22
|
riotabidv |
⊢ ( 𝑠 = 𝑅 → ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐺 ) ) = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) ) |
24 |
18 23
|
csbiegf |
⊢ ( 𝑅 ∈ 𝐴 → ⦋ 𝑅 / 𝑠 ⦌ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐺 ) ) = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) ) |
25 |
9 24
|
sylan9eqr |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) ) |
26 |
25 3
|
eqtr4di |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → if ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) , ⦋ 𝑅 / 𝑠 ⦌ 𝐼 , ⦋ 𝑅 / 𝑠 ⦌ 𝐷 ) = 𝐶 ) |
27 |
6 26
|
eqtrd |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 = 𝐶 ) |