Metamath Proof Explorer


Theorem cdleme31sn1

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 26-Feb-2013)

Ref Expression
Hypotheses cdleme31sn1.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
cdleme31sn1.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
cdleme31sn1.c 𝐶 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) )
Assertion cdleme31sn1 ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → 𝑅 / 𝑠 𝑁 = 𝐶 )

Proof

Step Hyp Ref Expression
1 cdleme31sn1.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
2 cdleme31sn1.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
3 cdleme31sn1.c 𝐶 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) )
4 eqid if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 ) = if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 )
5 2 4 cdleme31sn ( 𝑅𝐴 𝑅 / 𝑠 𝑁 = if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 ) )
6 5 adantr ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → 𝑅 / 𝑠 𝑁 = if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 ) )
7 iftrue ( 𝑅 ( 𝑃 𝑄 ) → if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 ) = 𝑅 / 𝑠 𝐼 )
8 1 csbeq2i 𝑅 / 𝑠 𝐼 = 𝑅 / 𝑠 ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
9 7 8 eqtrdi ( 𝑅 ( 𝑃 𝑄 ) → if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 ) = 𝑅 / 𝑠 ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) ) )
10 nfcv 𝑠 𝐴
11 nfv 𝑠 ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) )
12 nfcsb1v 𝑠 𝑅 / 𝑠 𝐺
13 12 nfeq2 𝑠 𝑦 = 𝑅 / 𝑠 𝐺
14 11 13 nfim 𝑠 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 )
15 10 14 nfralw 𝑠𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 )
16 nfcv 𝑠 𝐵
17 15 16 nfriota 𝑠 ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) )
18 17 a1i ( 𝑅𝐴 𝑠 ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) ) )
19 csbeq1a ( 𝑠 = 𝑅𝐺 = 𝑅 / 𝑠 𝐺 )
20 19 eqeq2d ( 𝑠 = 𝑅 → ( 𝑦 = 𝐺𝑦 = 𝑅 / 𝑠 𝐺 ) )
21 20 imbi2d ( 𝑠 = 𝑅 → ( ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) ↔ ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) ) )
22 21 ralbidv ( 𝑠 = 𝑅 → ( ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) ↔ ∀ 𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) ) )
23 22 riotabidv ( 𝑠 = 𝑅 → ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) ) = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) ) )
24 18 23 csbiegf ( 𝑅𝐴 𝑅 / 𝑠 ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) ) = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) ) )
25 9 24 sylan9eqr ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 ) = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑅 / 𝑠 𝐺 ) ) )
26 25 3 eqtr4di ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → if ( 𝑅 ( 𝑃 𝑄 ) , 𝑅 / 𝑠 𝐼 , 𝑅 / 𝑠 𝐷 ) = 𝐶 )
27 6 26 eqtrd ( ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ) → 𝑅 / 𝑠 𝑁 = 𝐶 )