Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31sn1c.g |
⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐸 ∨ ( ( 𝑠 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
2 |
|
cdleme31sn1c.i |
⊢ 𝐼 = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐺 ) ) |
3 |
|
cdleme31sn1c.n |
⊢ 𝑁 = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , 𝐷 ) |
4 |
|
cdleme31sn1c.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐸 ∨ ( ( 𝑅 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
5 |
|
cdleme31sn1c.c |
⊢ 𝐶 = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝑌 ) ) |
6 |
|
eqid |
⊢ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) |
7 |
2 3 6
|
cdleme31sn1 |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) ) |
8 |
1 4
|
cdleme31se |
⊢ ( 𝑅 ∈ 𝐴 → ⦋ 𝑅 / 𝑠 ⦌ 𝐺 = 𝑌 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ⦋ 𝑅 / 𝑠 ⦌ 𝐺 = 𝑌 ) |
10 |
9
|
eqeq2d |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ↔ 𝑦 = 𝑌 ) ) |
11 |
10
|
imbi2d |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ↔ ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝑌 ) ) ) |
12 |
11
|
ralbidv |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ↔ ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝑌 ) ) ) |
13 |
12
|
riotabidv |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝑌 ) ) ) |
14 |
13 5
|
eqtr4di |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = ⦋ 𝑅 / 𝑠 ⦌ 𝐺 ) ) = 𝐶 ) |
15 |
7 14
|
eqtrd |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 = 𝐶 ) |