| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme31snd.d | 
							⊢ 𝐷  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme31snd.n | 
							⊢ 𝑁  =  ( ( 𝑣  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑣 )  ∧  𝑊 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme31snd.e | 
							⊢ 𝐸  =  ( ( 𝑂  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑂 )  ∧  𝑊 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme31snd.o | 
							⊢ 𝑂  =  ( ( 𝑆  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑆 )  ∧  𝑊 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							csbnestgw | 
							⊢ ( 𝑆  ∈  𝐴  →  ⦋ 𝑆  /  𝑣 ⦌ ⦋ 𝑁  /  𝑡 ⦌ 𝐷  =  ⦋ ⦋ 𝑆  /  𝑣 ⦌ 𝑁  /  𝑡 ⦌ 𝐷 )  | 
						
						
							| 6 | 
							
								2 4
							 | 
							cdleme31sc | 
							⊢ ( 𝑆  ∈  𝐴  →  ⦋ 𝑆  /  𝑣 ⦌ 𝑁  =  𝑂 )  | 
						
						
							| 7 | 
							
								6
							 | 
							csbeq1d | 
							⊢ ( 𝑆  ∈  𝐴  →  ⦋ ⦋ 𝑆  /  𝑣 ⦌ 𝑁  /  𝑡 ⦌ 𝐷  =  ⦋ 𝑂  /  𝑡 ⦌ 𝐷 )  | 
						
						
							| 8 | 
							
								4
							 | 
							ovexi | 
							⊢ 𝑂  ∈  V  | 
						
						
							| 9 | 
							
								1 3
							 | 
							cdleme31sc | 
							⊢ ( 𝑂  ∈  V  →  ⦋ 𝑂  /  𝑡 ⦌ 𝐷  =  𝐸 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							⊢ ⦋ 𝑂  /  𝑡 ⦌ 𝐷  =  𝐸  | 
						
						
							| 11 | 
							
								7 10
							 | 
							eqtrdi | 
							⊢ ( 𝑆  ∈  𝐴  →  ⦋ ⦋ 𝑆  /  𝑣 ⦌ 𝑁  /  𝑡 ⦌ 𝐷  =  𝐸 )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							eqtrd | 
							⊢ ( 𝑆  ∈  𝐴  →  ⦋ 𝑆  /  𝑣 ⦌ ⦋ 𝑁  /  𝑡 ⦌ 𝐷  =  𝐸 )  |