Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31so.o |
⊢ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
2 |
|
cdleme31so.c |
⊢ 𝐶 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
3 |
|
nfcvd |
⊢ ( 𝑋 ∈ 𝐵 → Ⅎ 𝑥 ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
4 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∧ 𝑊 ) = ( 𝑋 ∧ 𝑊 ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
6 |
|
id |
⊢ ( 𝑥 = 𝑋 → 𝑥 = 𝑋 ) |
7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ↔ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
8 |
7
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) ↔ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) ) |
9 |
4
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ↔ 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) |
11 |
8 10
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ↔ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ↔ ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
13 |
12
|
riotabidv |
⊢ ( 𝑥 = 𝑋 → ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
14 |
3 13
|
csbiegf |
⊢ ( 𝑋 ∈ 𝐵 → ⦋ 𝑋 / 𝑥 ⦌ ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ∨ ( 𝑋 ∧ 𝑊 ) ) ) ) ) |
15 |
1
|
csbeq2i |
⊢ ⦋ 𝑋 / 𝑥 ⦌ 𝑂 = ⦋ 𝑋 / 𝑥 ⦌ ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
16 |
14 15 2
|
3eqtr4g |
⊢ ( 𝑋 ∈ 𝐵 → ⦋ 𝑋 / 𝑥 ⦌ 𝑂 = 𝐶 ) |