Metamath Proof Explorer


Theorem cdleme31so

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 25-Feb-2013)

Ref Expression
Hypotheses cdleme31so.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
cdleme31so.c 𝐶 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) )
Assertion cdleme31so ( 𝑋𝐵 𝑋 / 𝑥 𝑂 = 𝐶 )

Proof

Step Hyp Ref Expression
1 cdleme31so.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
2 cdleme31so.c 𝐶 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) )
3 nfcvd ( 𝑋𝐵 𝑥 ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) )
4 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝑊 ) = ( 𝑋 𝑊 ) )
5 4 oveq2d ( 𝑥 = 𝑋 → ( 𝑠 ( 𝑥 𝑊 ) ) = ( 𝑠 ( 𝑋 𝑊 ) ) )
6 id ( 𝑥 = 𝑋𝑥 = 𝑋 )
7 5 6 eqeq12d ( 𝑥 = 𝑋 → ( ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ↔ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) )
8 7 anbi2d ( 𝑥 = 𝑋 → ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) ↔ ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) ) )
9 4 oveq2d ( 𝑥 = 𝑋 → ( 𝑁 ( 𝑥 𝑊 ) ) = ( 𝑁 ( 𝑋 𝑊 ) ) )
10 9 eqeq2d ( 𝑥 = 𝑋 → ( 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ↔ 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) )
11 8 10 imbi12d ( 𝑥 = 𝑋 → ( ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) ↔ ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) )
12 11 ralbidv ( 𝑥 = 𝑋 → ( ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) ↔ ∀ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) )
13 12 riotabidv ( 𝑥 = 𝑋 → ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) ) = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) )
14 3 13 csbiegf ( 𝑋𝐵 𝑋 / 𝑥 ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) ) = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) )
15 1 csbeq2i 𝑋 / 𝑥 𝑂 = 𝑋 / 𝑥 ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
16 14 15 2 3eqtr4g ( 𝑋𝐵 𝑋 / 𝑥 𝑂 = 𝐶 )