| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme32.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme32.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme32.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme32.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme32.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme32.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme32.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme32.c | 
							⊢ 𝐶  =  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme32.d | 
							⊢ 𝐷  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdleme32.e | 
							⊢ 𝐸  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑠  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdleme32.i | 
							⊢ 𝐼  =  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							cdleme32.n | 
							⊢ 𝑁  =  if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  𝐼 ,  𝐶 )  | 
						
						
							| 13 | 
							
								
							 | 
							cdleme32.o | 
							⊢ 𝑂  =  ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑥  ∧  𝑊 ) ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							cdleme32.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑥  ≤  𝑊 ) ,  𝑂 ,  𝑥 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simp11 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 17 | 
							
								
							 | 
							simp23r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  →  ¬  𝑋  ≤  𝑊 )  | 
						
						
							| 18 | 
							
								1 2 3 4 5 6
							 | 
							lhpmcvr2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑋  ∈  𝐵  ∧  ¬  𝑋  ≤  𝑊 ) )  →  ∃ 𝑠  ∈  𝐴 ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  | 
						
						
							| 19 | 
							
								15 16 17 18
							 | 
							syl12anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  →  ∃ 𝑠  ∈  𝐴 ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑠 ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  | 
						
						
							| 21 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑠 𝐵  | 
						
						
							| 22 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑠 ( 𝑃  ≠  𝑄  ∧  ¬  𝑥  ≤  𝑊 )  | 
						
						
							| 23 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑠 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑥  ∧  𝑊 ) ) )  | 
						
						
							| 24 | 
							
								23 21
							 | 
							nfriota | 
							⊢ Ⅎ 𝑠 ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑥  ∧  𝑊 ) ) ) )  | 
						
						
							| 25 | 
							
								13 24
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑠 𝑂  | 
						
						
							| 26 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑠 𝑥  | 
						
						
							| 27 | 
							
								22 25 26
							 | 
							nfif | 
							⊢ Ⅎ 𝑠 if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑥  ≤  𝑊 ) ,  𝑂 ,  𝑥 )  | 
						
						
							| 28 | 
							
								21 27
							 | 
							nfmpt | 
							⊢ Ⅎ 𝑠 ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑥  ≤  𝑊 ) ,  𝑂 ,  𝑥 ) )  | 
						
						
							| 29 | 
							
								14 28
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑠 𝐹  | 
						
						
							| 30 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑠 𝑋  | 
						
						
							| 31 | 
							
								29 30
							 | 
							nffv | 
							⊢ Ⅎ 𝑠 ( 𝐹 ‘ 𝑋 )  | 
						
						
							| 32 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑠  ≤   | 
						
						
							| 33 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑠 𝑌  | 
						
						
							| 34 | 
							
								29 33
							 | 
							nffv | 
							⊢ Ⅎ 𝑠 ( 𝐹 ‘ 𝑌 )  | 
						
						
							| 35 | 
							
								31 32 34
							 | 
							nfbr | 
							⊢ Ⅎ 𝑠 ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 )  | 
						
						
							| 36 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  𝑠  ∈  𝐴 )  | 
						
						
							| 39 | 
							
								
							 | 
							simprrl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ¬  𝑠  ≤  𝑊 )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simprrr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  | 
						
						
							| 42 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  𝑋  ≤  𝑌 )  | 
						
						
							| 43 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14
							 | 
							cdleme32c | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  ( ( 𝑠  ∈  𝐴  ∧  ¬  𝑠  ≤  𝑊 )  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋  ∧  𝑋  ≤  𝑌 ) )  →  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  | 
						
						
							| 44 | 
							
								36 37 40 41 42 43
							 | 
							syl113anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 ) ) )  →  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							exp32 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  →  ( 𝑠  ∈  𝐴  →  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  →  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) ) ) )  | 
						
						
							| 46 | 
							
								20 35 45
							 | 
							rexlimd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  →  ( ∃ 𝑠  ∈  𝐴 ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑋  ∧  𝑊 ) )  =  𝑋 )  →  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 47 | 
							
								19 46
							 | 
							mpd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑋  ≤  𝑊 ) )  ∧  𝑋  ≤  𝑌 )  →  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  |