Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme32.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleme32.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdleme32.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdleme32.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdleme32.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdleme32.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdleme32.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdleme32.c |
⊢ 𝐶 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme32.d |
⊢ 𝐷 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme32.e |
⊢ 𝐸 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑠 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
11 |
|
cdleme32.i |
⊢ 𝐼 = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐸 ) ) |
12 |
|
cdleme32.n |
⊢ 𝑁 = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , 𝐶 ) |
13 |
|
cdleme32.o |
⊢ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
14 |
|
cdleme32.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) ) |
15 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑅 ∈ 𝐴 ) |
16 |
1 5
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵 ) |
17 |
15 16
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑅 ∈ 𝐵 ) |
18 |
|
eqid |
⊢ ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) |
19 |
13 18
|
cdleme31so |
⊢ ( 𝑅 ∈ 𝐵 → ⦋ 𝑅 / 𝑥 ⦌ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
20 |
17 19
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ⦋ 𝑅 / 𝑥 ⦌ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
21 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
22 |
|
simp3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ≠ 𝑄 ) |
23 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme32snb |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ∈ 𝐵 ) |
25 |
21 22 23 24
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ∈ 𝐵 ) |
26 |
|
nfv |
⊢ Ⅎ 𝑠 ¬ 𝑅 ≤ 𝑊 |
27 |
|
nfcsb1v |
⊢ Ⅎ 𝑠 ⦋ 𝑅 / 𝑠 ⦌ 𝑁 |
28 |
27
|
nfeq2 |
⊢ Ⅎ 𝑠 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 |
29 |
26 28
|
nfim |
⊢ Ⅎ 𝑠 ( ¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) |
30 |
|
breq1 |
⊢ ( 𝑠 = 𝑅 → ( 𝑠 ≤ 𝑊 ↔ 𝑅 ≤ 𝑊 ) ) |
31 |
30
|
notbid |
⊢ ( 𝑠 = 𝑅 → ( ¬ 𝑠 ≤ 𝑊 ↔ ¬ 𝑅 ≤ 𝑊 ) ) |
32 |
|
csbeq1a |
⊢ ( 𝑠 = 𝑅 → 𝑁 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) |
33 |
32
|
eqeq2d |
⊢ ( 𝑠 = 𝑅 → ( 𝑧 = 𝑁 ↔ 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) |
34 |
31 33
|
imbi12d |
⊢ ( 𝑠 = 𝑅 → ( ( ¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁 ) ↔ ( ¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) ) |
35 |
34
|
ax-gen |
⊢ ∀ 𝑠 ( 𝑠 = 𝑅 → ( ( ¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁 ) ↔ ( ¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) ) |
36 |
|
ceqsralt |
⊢ ( ( Ⅎ 𝑠 ( ¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ∧ ∀ 𝑠 ( 𝑠 = 𝑅 → ( ( ¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁 ) ↔ ( ¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) ) ∧ 𝑅 ∈ 𝐴 ) → ( ∀ 𝑠 ∈ 𝐴 ( 𝑠 = 𝑅 → ( ¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁 ) ) ↔ ( ¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) ) |
37 |
29 35 36
|
mp3an12 |
⊢ ( 𝑅 ∈ 𝐴 → ( ∀ 𝑠 ∈ 𝐴 ( 𝑠 = 𝑅 → ( ¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁 ) ) ↔ ( ¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) → ( ∀ 𝑠 ∈ 𝐴 ( 𝑠 = 𝑅 → ( ¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁 ) ) ↔ ( ¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) ) |
39 |
38
|
3ad2ant2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ( ∀ 𝑠 ∈ 𝐴 ( 𝑠 = 𝑅 → ( ¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁 ) ) ↔ ( ¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) ) |
40 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
41 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
42 |
2 4 41 5 6
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝑅 ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
43 |
40 23 42
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑅 ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
44 |
43
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝑅 ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
45 |
44
|
oveq2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = ( 𝑠 ∨ ( 0. ‘ 𝐾 ) ) ) |
46 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → 𝐾 ∈ HL ) |
47 |
46
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
48 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
49 |
47 48
|
syl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → 𝐾 ∈ OL ) |
50 |
1 5
|
atbase |
⊢ ( 𝑠 ∈ 𝐴 → 𝑠 ∈ 𝐵 ) |
51 |
50
|
ad2antrl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → 𝑠 ∈ 𝐵 ) |
52 |
1 3 41
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑠 ∈ 𝐵 ) → ( 𝑠 ∨ ( 0. ‘ 𝐾 ) ) = 𝑠 ) |
53 |
49 51 52
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝑠 ∨ ( 0. ‘ 𝐾 ) ) = 𝑠 ) |
54 |
45 53
|
eqtrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑠 ) |
55 |
54
|
eqeq1d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ↔ 𝑠 = 𝑅 ) ) |
56 |
44
|
oveq2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) = ( 𝑁 ∨ ( 0. ‘ 𝐾 ) ) ) |
57 |
|
simpl11 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
58 |
|
simpl12 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
59 |
|
simpl13 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
60 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) |
61 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → 𝑃 ≠ 𝑄 ) |
62 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme27cl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ) → 𝑁 ∈ 𝐵 ) |
63 |
57 58 59 60 61 62
|
syl122anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → 𝑁 ∈ 𝐵 ) |
64 |
1 3 41
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑁 ∈ 𝐵 ) → ( 𝑁 ∨ ( 0. ‘ 𝐾 ) ) = 𝑁 ) |
65 |
49 63 64
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝑁 ∨ ( 0. ‘ 𝐾 ) ) = 𝑁 ) |
66 |
56 65
|
eqtrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑁 ) |
67 |
66
|
eqeq2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ↔ 𝑧 = 𝑁 ) ) |
68 |
55 67
|
imbi12d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ( 𝑠 = 𝑅 → 𝑧 = 𝑁 ) ) ) |
69 |
68
|
expr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑠 ∈ 𝐴 ) → ( ¬ 𝑠 ≤ 𝑊 → ( ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ( 𝑠 = 𝑅 → 𝑧 = 𝑁 ) ) ) ) |
70 |
69
|
pm5.74d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ¬ 𝑠 ≤ 𝑊 → ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ↔ ( ¬ 𝑠 ≤ 𝑊 → ( 𝑠 = 𝑅 → 𝑧 = 𝑁 ) ) ) ) |
71 |
|
impexp |
⊢ ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ( ¬ 𝑠 ≤ 𝑊 → ( ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
72 |
|
bi2.04 |
⊢ ( ( 𝑠 = 𝑅 → ( ¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁 ) ) ↔ ( ¬ 𝑠 ≤ 𝑊 → ( 𝑠 = 𝑅 → 𝑧 = 𝑁 ) ) ) |
73 |
70 71 72
|
3bitr4g |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ( 𝑠 = 𝑅 → ( ¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁 ) ) ) ) |
74 |
73
|
ralbidva |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ∀ 𝑠 ∈ 𝐴 ( 𝑠 = 𝑅 → ( ¬ 𝑠 ≤ 𝑊 → 𝑧 = 𝑁 ) ) ) ) |
75 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ¬ 𝑅 ≤ 𝑊 ) |
76 |
|
biimt |
⊢ ( ¬ 𝑅 ≤ 𝑊 → ( 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ↔ ( ¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) ) |
77 |
75 76
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ↔ ( ¬ 𝑅 ≤ 𝑊 → 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) ) |
78 |
39 74 77
|
3bitr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) |
79 |
78
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) |
80 |
25 79
|
riota5 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) |
81 |
20 80
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑃 ≠ 𝑄 ) → ⦋ 𝑅 / 𝑥 ⦌ 𝑂 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) |