Metamath Proof Explorer


Theorem cdleme32fva1

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 2-Mar-2013)

Ref Expression
Hypotheses cdleme32.b 𝐵 = ( Base ‘ 𝐾 )
cdleme32.l = ( le ‘ 𝐾 )
cdleme32.j = ( join ‘ 𝐾 )
cdleme32.m = ( meet ‘ 𝐾 )
cdleme32.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme32.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme32.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme32.c 𝐶 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme32.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme32.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdleme32.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) )
cdleme32.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 )
cdleme32.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
cdleme32.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
Assertion cdleme32fva1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ( 𝐹𝑅 ) = 𝑅 / 𝑠 𝑁 )

Proof

Step Hyp Ref Expression
1 cdleme32.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme32.l = ( le ‘ 𝐾 )
3 cdleme32.j = ( join ‘ 𝐾 )
4 cdleme32.m = ( meet ‘ 𝐾 )
5 cdleme32.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme32.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme32.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme32.c 𝐶 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme32.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
10 cdleme32.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
11 cdleme32.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) )
12 cdleme32.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 )
13 cdleme32.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
14 cdleme32.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
15 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → 𝑅𝐴 )
16 1 5 atbase ( 𝑅𝐴𝑅𝐵 )
17 15 16 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → 𝑅𝐵 )
18 simp3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → 𝑃𝑄 )
19 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ¬ 𝑅 𝑊 )
20 13 14 cdleme31fv1s ( ( 𝑅𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐹𝑅 ) = 𝑅 / 𝑥 𝑂 )
21 17 18 19 20 syl12anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ( 𝐹𝑅 ) = 𝑅 / 𝑥 𝑂 )
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fva ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → 𝑅 / 𝑥 𝑂 = 𝑅 / 𝑠 𝑁 )
23 21 22 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑃𝑄 ) → ( 𝐹𝑅 ) = 𝑅 / 𝑠 𝑁 )