Metamath Proof Explorer


Theorem cdleme32fvcl

Description: Part of proof of Lemma D in Crawley p. 113. Closure of the function F . (Contributed by NM, 10-Feb-2013)

Ref Expression
Hypotheses cdleme32.b 𝐵 = ( Base ‘ 𝐾 )
cdleme32.l = ( le ‘ 𝐾 )
cdleme32.j = ( join ‘ 𝐾 )
cdleme32.m = ( meet ‘ 𝐾 )
cdleme32.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme32.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme32.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme32.c 𝐶 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme32.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme32.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdleme32.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) )
cdleme32.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 )
cdleme32.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
cdleme32.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
Assertion cdleme32fvcl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 cdleme32.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme32.l = ( le ‘ 𝐾 )
3 cdleme32.j = ( join ‘ 𝐾 )
4 cdleme32.m = ( meet ‘ 𝐾 )
5 cdleme32.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme32.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme32.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme32.c 𝐶 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme32.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
10 cdleme32.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
11 cdleme32.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) )
12 cdleme32.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 )
13 cdleme32.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
14 cdleme32.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
15 eqid ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) )
16 13 14 15 cdleme31fv1 ( ( 𝑋𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) )
17 16 adantll ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) )
18 simpll1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
19 simpll2 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
20 simpll3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
21 simprl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → 𝑃𝑄 )
22 simplr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → 𝑋𝐵 )
23 simprr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ¬ 𝑋 𝑊 )
24 1 2 3 4 5 6 7 8 9 10 11 12 15 cdleme29cl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) ∈ 𝐵 )
25 18 19 20 21 22 23 24 syl312anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → 𝑧 = ( 𝑁 ( 𝑋 𝑊 ) ) ) ) ∈ 𝐵 )
26 17 25 eqeltrd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) ∈ 𝐵 )
27 14 cdleme31fv2 ( ( 𝑋𝐵 ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) = 𝑋 )
28 simpl ( ( 𝑋𝐵 ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → 𝑋𝐵 )
29 27 28 eqeltrd ( ( 𝑋𝐵 ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) ∈ 𝐵 )
30 29 adantll ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) ∈ 𝐵 )
31 26 30 pm2.61dan ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) → ( 𝐹𝑋 ) ∈ 𝐵 )