Metamath Proof Explorer


Theorem cdleme32le

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 20-Feb-2013)

Ref Expression
Hypotheses cdleme32.b 𝐵 = ( Base ‘ 𝐾 )
cdleme32.l = ( le ‘ 𝐾 )
cdleme32.j = ( join ‘ 𝐾 )
cdleme32.m = ( meet ‘ 𝐾 )
cdleme32.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme32.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme32.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme32.c 𝐶 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme32.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme32.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdleme32.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) )
cdleme32.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 )
cdleme32.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
cdleme32.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
Assertion cdleme32le ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝐹𝑋 ) ( 𝐹𝑌 ) )

Proof

Step Hyp Ref Expression
1 cdleme32.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme32.l = ( le ‘ 𝐾 )
3 cdleme32.j = ( join ‘ 𝐾 )
4 cdleme32.m = ( meet ‘ 𝐾 )
5 cdleme32.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme32.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme32.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme32.c 𝐶 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme32.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
10 cdleme32.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
11 cdleme32.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) )
12 cdleme32.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 )
13 cdleme32.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
14 cdleme32.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
15 simpl1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
16 simpl2l ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → 𝑋𝐵 )
17 simpl2r ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → 𝑌𝐵 )
18 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) )
19 simpl3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → 𝑋 𝑌 )
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) ∧ 𝑋 𝑌 ) → ( 𝐹𝑋 ) ( 𝐹𝑌 ) )
21 15 16 17 18 19 20 syl131anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) ( 𝐹𝑌 ) )
22 simp11 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
23 simp12 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑋𝐵𝑌𝐵 ) )
24 simp3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) )
25 simp2 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) )
26 simp13 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → 𝑋 𝑌 )
27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32f ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑋𝐵𝑌𝐵 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ) ∧ 𝑋 𝑌 ) → ( 𝐹𝑋 ) ( 𝐹𝑌 ) )
28 22 23 24 25 26 27 syl131anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) ( 𝐹𝑌 ) )
29 28 3exp ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) → ( ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) → ( 𝐹𝑋 ) ( 𝐹𝑌 ) ) ) )
30 simp13 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → 𝑋 𝑌 )
31 simp12l ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → 𝑋𝐵 )
32 simp3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) )
33 14 cdleme31fv2 ( ( 𝑋𝐵 ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) = 𝑋 )
34 31 32 33 syl2anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) = 𝑋 )
35 simp12r ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → 𝑌𝐵 )
36 simp2 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ¬ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) )
37 14 cdleme31fv2 ( ( 𝑌𝐵 ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ) → ( 𝐹𝑌 ) = 𝑌 )
38 35 36 37 syl2anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑌 ) = 𝑌 )
39 30 34 38 3brtr4d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) ( 𝐹𝑌 ) )
40 39 3exp ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( ¬ ( 𝑃𝑄 ∧ ¬ 𝑌 𝑊 ) → ( ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) → ( 𝐹𝑋 ) ( 𝐹𝑌 ) ) ) )
41 29 40 pm2.61d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) → ( 𝐹𝑋 ) ( 𝐹𝑌 ) ) )
42 41 imp ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) ∧ ¬ ( 𝑃𝑄 ∧ ¬ 𝑋 𝑊 ) ) → ( 𝐹𝑋 ) ( 𝐹𝑌 ) )
43 21 42 pm2.61dan ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝐹𝑋 ) ( 𝐹𝑌 ) )