Metamath Proof Explorer


Theorem cdleme35g

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 10-Mar-2013)

Ref Expression
Hypotheses cdleme35.l = ( le ‘ 𝐾 )
cdleme35.j = ( join ‘ 𝐾 )
cdleme35.m = ( meet ‘ 𝐾 )
cdleme35.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme35.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme35.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme35.f 𝐹 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
Assertion cdleme35g ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( ( 𝐹 𝑈 ) ( 𝑃 ( ( 𝑄 𝐹 ) 𝑊 ) ) ) = 𝑅 )

Proof

Step Hyp Ref Expression
1 cdleme35.l = ( le ‘ 𝐾 )
2 cdleme35.j = ( join ‘ 𝐾 )
3 cdleme35.m = ( meet ‘ 𝐾 )
4 cdleme35.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme35.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme35.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme35.f 𝐹 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
8 1 2 3 4 5 6 7 cdleme35a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝐹 𝑈 ) = ( 𝑅 𝑈 ) )
9 1 2 3 4 5 6 7 cdleme35e ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑃 ( ( 𝑄 𝐹 ) 𝑊 ) ) = ( 𝑃 𝑅 ) )
10 8 9 oveq12d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( ( 𝐹 𝑈 ) ( 𝑃 ( ( 𝑄 𝐹 ) 𝑊 ) ) ) = ( ( 𝑅 𝑈 ) ( 𝑃 𝑅 ) ) )
11 1 2 3 4 5 6 7 cdleme35f ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( ( 𝑅 𝑈 ) ( 𝑃 𝑅 ) ) = 𝑅 )
12 10 11 eqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( ( 𝐹 𝑈 ) ( 𝑃 ( ( 𝑄 𝐹 ) 𝑊 ) ) ) = 𝑅 )